主题:【第十届原创】OPTON的微观世界之量子阱

浏览0 回复4 电梯直达
欧波同
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
维权声明:本文为SH101734原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。
概  述

那么量子阱是什么呢,小编就小小解释一下,量子阱就是指由2种不同的半导体材料相间排列形成的、具有明显量子限域效应的电子或空穴的势阱。量子阱器件,即指采用量子阱材料作为有源区的光电子器件。
一、量子阱的构造
如下图,量子阱器件的基本结构是两块N型GaAs附于两端,而中间有一个薄层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成。在未加偏压时,各个区域的势能与中间的GaAs对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的N型区(发射极)进入右边的N型区(集电极),中间必须通过AlGaAs层进入量子阱,然后再穿透另一层AlGaAs。量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,如量子阱红外探测器、GaA s、InP基超晶格、量子阱材料、量子光通讯和量子结构LED等,而且随着制作水平的提高,它将获得更加广泛的应用。

量子阱的基本结构


二、量子阱的微观世界
量子阱材料一般使用分子束外延(molecular beam epitaxy ,简称 MBE)或金属有机氧化物化学气相沉积法(MOCVD)技术制备,对于量子阱材料界面结构的观察,晶体生长过程中出现的诸如层错,位错等缺陷的形成、特性及其分布等,我们一般利用高分辨透射扫描电镜(TEM)来观察,从而确定材料微观结构参数与器件宏观性能参数间的关系。众所周知,透射样品制备要求严格,制样困难,首先要将样品膜面利用进行对粘,再继续线切割为3mm×1mm;其次采用砂纸将样品打磨抛光使其厚度为60μm 左右,再抛光至 20μm;最后使用离子减薄仪将样品轰击为10nm以下。这个过程技术要求高,每一步都需要经验,不是一般人都可以做的,而且成本较高;而扫描电镜相比较而言,样品制备简单,导电样品直接用导电胶固定在样品台上,放入腔室内进行观察,对于不导电样品,我们也有自己的解决方案,一配备离子溅射仪,即喷金,二采用低电压模式,低电压成像是现代场发射扫描电镜的技术发展趋势,低电压成像可以呈现样品极表面细节、可以减少不导电样品的荷电(放电)现象、可以减少电子束对样品的损伤。
对于薄膜材料更是如此,下面就是我们来看看采用蔡司sigma 500所测的量子阱材料,我们得到了10万和15万倍下的量子阱的背散射图片,可以看出样品界面出现了亮暗程度不同的衬度带,各层分界清楚,界面平整,层分布精度高,周期性好,厚度为 68.11nm,阱和势垒交替出现,从而确定周期厚度。


后  记

随着分子束外延和金属有机化学汽相淀积技术的迅速发展,人们已能够生长出原子尺度的、界面平滑的优质超薄层半导体材料,可以在生长方向上精确地控制薄层的组分和厚度,从而实现超晶格量子阱结构,所以晶格量子阱结构材料及应用的研究已迅速发展成当今半导体物理和固体物理学中最重要的前沿课题之一,而扫描电子显微镜一定可以大展身手,那就跟紧小编的步伐,我们一起跟随蔡司扫描电镜去见证光电材料史的辉煌吧!
为您推荐
您可能想找: 扫描电镜(SEM) 询底价
专属顾问快速对接
立即提交
小M
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
SEMDriver
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 小M(mitchell_dyzy) 发表:如果有mapping的结果的话更有说服力
普通能谱很难清楚分开
苗晨光
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 小M(mitchell_dyzy) 发表:
如果有mapping的结果的话更有说服力
这么高倍能谱数据就不靠谱了
小M
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由苗晨光(Insm_9e32e6b9)发表:
原文由 小M(mitchell_dyzy) 发表:
如果有mapping的结果的话更有说服力
这么高倍能谱数据就不靠谱了
TEM下有原子级EDS mapping或者EELS mapping,还是比较准的
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴