主题:【讨论】量子点的研究?

浏览0 回复226 电梯直达
可能感兴趣
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
量子效应
  量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观体材料的物理化学性质,在非线形光学、磁介质、催化、医药及功能材料等方面具有极为广阔的应用前景,同时将对生命科学和信息技术的持续发展以及物质领域的基础研究发生深刻的影响。
表面效应
  表面效应是指随着量子点的粒径减小,大部分原子位于量子点的表面,量子点的比表面积随粒径减小而增大。由于纳米颗粒大的比表面积,表面相原子数的增多,导致了表面原子的配位不足、不饱和键和悬键增多.使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。这种表面效应将引起纳米粒子大的表面能和高的活性。表面原子的活性不但引起纳米粒子表面原子输运和结构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。表面缺陷导致陷阱电子或空穴,它们反过来会影响量子点的发光性质、引起非线性光学效应。金属体材料通过光反射而呈现出各种特征颜色,由于表面效应和尺寸效应使纳米金属颗粒对光反射系数显著下降,通常低于1%,因而纳米金属颗粒一般呈黑色,粒径越小,颜色越深,即纳米颗粒的光吸收能力越强,呈现出宽频带强吸收谱。
限域效应
  由于量子点与电子的De Broglie波长、相干波长及激子Bohr半径可比拟,电子局限在纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强,将引起量子限域效应。对于量子点,当粒径与Wannier激子Bohr半径aB相当或更小时,处于强限域区,易形成激子,产生激子吸收带。随着粒径的减小,激子带的吸收系数增加,出现激子强吸收。由于量子限域效应,激子的最低能量向高能方向移动即蓝移。最新的报道表面,日本NEC已成功地制备了量子点阵,在基底上沉积纳米岛状量子点阵列。当用激光照射量子点使之激励时,量子点发出蓝光,表明量子点确实具有关闭电子的功能的量子限域效应。当量子点的粒径大于Waboer激子Bohr半径岭时,处于弱限域区,此时不能形成激子,其光谱是由干带间跃迁的一系列线谱组成。
隧道效应
  传统的功能材料和元件,其物理尺寸远大于电子自由程,所观测的是群电子输运行为,具有统计平均结果,所描述的性质主要是宏观物理量.当微电子器件进一步细微化时,必须要考虑量子隧道效应。100nm被认为是微电子技术发展的极限,原因是电子在纳米尺度空间中将有明显的波动性,其量子效应将起主要功能.电子在纳米尺度空间中运动,物理线度与电子自由程相当,载流子的输运过程将有明显电子的波动性,出现量子隧道效应,电子的能级是分立的.利用电子的量子效应制造的量子器件,要实现量子效应,要求在几个μm到几十个μm的微小区域形成纳米导电域。电子被“锁”在纳米导电区域,电子在纳米空间中显现出的波动性产生了量子限域效应。纳米导电区域之间形成薄薄的量子垫垒,当电压很低时,电子被限制在纳米尺度范围运动,升高电压可以使电子越过纳米势垒形成费米电子海,使体系变为导电.电子从一个量子阱穿越量子垫垒进入另一个量子阱就出现了量子隧道效应,这种绝缘到导电的临界效应是纳米有序阵列体系的特点。
尺寸效应
  通过控制量子点的形状、结构和尺寸,就可以方便地调节其能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。随着量子点尺寸的逐渐减小,量子点的光吸收谱出现蓝移现象。尺寸越小,则谱蓝移现象也越显著,这就是人所共知的量子尺寸效应。
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
应用前景
生命科学
  很多现代发光材料和器件都由半导体量子结构所构成,材料形成的量子点尺寸都与过去常用的染料分子的尺寸接近,因而象荧光染料一样对生物医学研究有很大用途。从生物体系的发光标记物的差别上讲,量子点由于量子力学的奇妙规则而具有显著的尺寸效应,基本上高于特定域值的光都可吸收,而一个有机染料分子只有在吸收合适能量的光子后才能从基态升到较高的激发态,所用的光必须是精确的波长或颜色,这明显与半导体体相材料不同,而量子点要吸收所有高于其带隙能量的光子,但所发射的光波长(即颜色)又非常具有尺寸依赖性。所以,单一种类的纳米半导体材料就能够按尺寸变化产生一个发光波长不同的、颜色分明的标记物家族,这是染料分子根本无法实现的。   与传统的染料分子相比,量于点确实具有多种优势。无机微晶能够承受多次的激发和光发射,而有机分子却会分解.持久的稳定性可以让研究人员更长时间地观测细胞和组织,并毫无困难地进行界面修饰连接”。量于点最大的好处是有丰富的颜色。生物体系的复杂性经常需要同时观察几种组分,如果用染料分子染色,则需要不同波长的光来激发,而量于点则不存在这个问题,使用不同大小(进而不同色彩)的纳米晶体来标记不同的生物分子。使用单一光源就可以使不同的颗粒能够被即时监控。量子点特殊的光学性质使得它在生物化学、分子生物学、细胞生物学、基因组学、蛋白质组学、药物筛选、生物大分子相互作用等研究中有极大的应用前景。
半导体器件
  半导体量子点的生长和性质成为当今研究的热点,目前最常用的制备量子点的方法是自组织生长方式。  量子点半导体
量子点中低的态密度和能级的尖锐化,导致了量子点结构对其中的载流子产生三维量子限制效应,从而使其电学性能和光学性能发生变化,而且量子点在正入射情况下能发生明显的带内跃迁。这些性质使得半导体量子点在单电子器件、存贮器以及各种光电器件等方面具有极为广阔的应用前景。   基于库仑阻塞效应和量子尺寸效应制成的半导体单电子器件由于具有小尺寸,低消耗而日益受到人们的关注。 “半导体量子点材料及量子点激光器”是半导体技术领域中的一个前沿性课题。这项工作获得了突破性进展,于2000年4月19日通过中国科学院科技成果鉴定。半导体低维结构材料是一种人工改性的新型半导体低维材料,基于它的量子尺寸效应、量子隧穿和库仑阻塞以及非线性光学效应等是新一代固态量子器件的基础,在未来的纳米电子学、光电子学和新一代超大规模集成电路等方面有着极其重要的应用前景。采用应变自组装方法直接生长量子点材料,可将量子点的横向尺寸缩小到几十纳米之内,接近纵向尺寸,并可获得无损伤、无位借的量子点,现已成为量子点材料制备的重要手段之一;其不足之处是量子点的均匀性不易控制。 以量子点结构为有源区的量子点激光器理论上具有更低的阈值电流密度、更高的光增益、更高的特征温度和更宽的调制带宽等优点,将使半导体激光器的性能有一个大的飞跃,对未来半导体激光器市场的发展方向影响巨大。近年来,欧洲、美国、日本等国家都开展了应变自组装量子点材料和量子点激光器的研究,取得了很大进展。 除了采用量子点材料研制边发射、面发射激光器外,在其他的光电子器件上量子点也得到了广泛的应用。
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
量子点不是点   丹麦科技大学光电工程系(DTU)量子光学研究小组和哥本哈根大学尼尔斯·波尔研究所的科学家共同发现,固体光子发射器发出的光,也就是所谓的量子点并不是点,这与科学家以前一直认识的不同,这让科学界非常吃惊。新发现可能有助于改进量子信息设备的效率,该研究发表在19日出版的《自然·物理学》杂志上。目前,科学家能够制造和定制高效的、每次发射一个光子(光线的基本组成单元)的光源发射器。科学家将这样的发射器称为量子点,其包含数千个原子。以前,科学家认为,量子点是三个维度的尺寸都在100纳米以下,外观恰似一很小的点状物。但现在科学家发现,量子点不能被描述成光线的点源,因此,科学家得出了一个令人吃惊的结论:量子点不是点。科学家在实验中将量子点放置在一面金属镜子附近,并记录了量子点发射出来的光子的情况。不管是否上下翻转,光线的点源(光子)都应该拥有同样的性质,科学家认为量子点也会出现这种情况。但结果表明,情况并非如此,科学家发现,量子点的方位不同,其发射出的光子数也不同。这个实验性的发现同新的光—物质交互理论非常契合,该理论由DTU的研究人员和尼尔斯·波尔研究所的安德斯·索伦森所研发。该理论考虑了量子点在立体空间的扩展。实验中金属镜子的表面存在着高度受限的等离子激元。等离子激元光子学是一个非常活跃和富有前景的研究领域,等离子激元中高度受限的光子可以应用于量子信息科学或太阳能捕获等领域。等离子激元受到强烈的限制也暗示着,量子点发出的光子能被大大地改变,量子点非常可能激活等离子激元。目前的工作已经证明,科学家可以更有效地激活等离子激元。因此,量子点可以被扩展到超越原子维度的更大的维度,这表明,量子点能同等离子激元更有效地交互作用。这项工作可能为利用量子点的立体维度的新的纳米光子器件铺平道路。新的效应在光子晶体、腔量子电动力学,以及光捕捉等其他研究领域也具有非常重要的作用 。
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 喜乐 平安(oceanstark) 发表:
        大家知道目前有哪些老师在做量子点的研究么??

oceanstark老师的题目又让俺重新了解了一下量子点的皮毛知识,十分感谢,顺便把知识也发上来了,但愿能普及一下量子点的知识
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
量子点(英语:Quantum Dot)是在把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。这种约束可以归结于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自组量子点中),半导体的表面(例如:半导体纳米晶体),或者以上三者的结合。量子点具有分离的量子化的能谱。所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。一个量子点具有少量的(1-100个)整数个的电子、空穴或空穴电子对,即其所带的电量是元电荷的整数倍。

描述

小的量子点,例如胶体半导体纳米晶,可以小到只有210个纳米,这相当于1050个原子的直径的尺寸,在一个量子点体积中可以包含100100,000个这样的原子.自组装量子点的典型尺寸在1050 纳米之间。通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。

制造

美国科学家首度利用光将胶状(colloidal)半导体量子点(quantum dot)磁化,且其生命周期远远超过先前的记录。这个结果除了能激发更多基础研究,对于同时利用自旋与电荷的自旋电子元件(spintronics)领域,也是一项重大的进展。

直到目前,半导体只能在相当低温下呈现磁性,原因是磁化半导体纳米微粒需要靠激子(exciton)之间的磁性交互作用,但此作用的强度在30 K附近就不足以对抗热效应。

最近,华盛顿大学的Daniel Gamelin等人制造出掺杂的纳米微晶,它们的量子局限效应(quantum confinement effect)使激子具有很大的磁性交互作用,且生命周期可长达100 ns,比先前的记录200皮秒(picosecond, ps)高出很多。研究人员利用光将激子注入胶状纳米微晶中,产生相当强的光诱发磁化(light-induced magnetization)现象。

华大团队成功的关键在于以磁性锰离子取代镉化硒(CdSe)半导体纳米微晶中的部份镉离子。这些悬浮在胶状溶液中的微晶大小不到10 nm,照光时内部产生的强大磁场可将锰离子的自旋完全排正。Gamelin表示,排正的过程非常快,此效应在低温时非常强,且可维持到室温。这要归功于第一次在研究中被观察到的高温磁激子(excitonic magnetic polaron, EMP)

上述团队舍弃以传统的分子束磊晶法(MBE),而改用新的化学方法直接合成磁性半导体量子点。Gamelin解释,由于掺质-载子间的交互作用够强,EMP稳定性因而增强超过100倍,所以才能在300 K下观察到磁化效应。

美国科学家开发出一种新型的电子胶(electronic glue),能将个别的纳米晶体(nanocrystals)连接在一起。这种电子胶还能用来制作大面积的电子元件和光伏(photovoltaics)元件。

利用旋转或浸泡涂布(dip coating)和喷墨印刷等溶液类制程来制作大面积太阳电池,例如便宜的屋顶太阳能面板,是高成本效益的方法。不过这些技术必须让半导体溶解,以方便做为墨水(ink)使用。半导体纳米微晶是微小的半导体块状物,是制作此类墨水的理想材料。

然而,在纳米微晶表面由庞大、绝缘有机分子组成的表面配位基,会阻隔纳米晶体间的电荷转移,造成印刷阵列内的个别纳米微晶彼此连结不佳,这点大大降低了纳米微晶在太阳电池和其它的元件上的应用。

最近,芝加哥大学的Dmitri Talapin等人开发出一种新的化学材料,能让个别纳米微晶以强连结的方式相互结合成阵列,克服了前述的问题。Talapin表示,他们的方法提供一个材料设计的多功能的平台,将会对电子元件、光伏元件和热电(thermoelectrics)元件的制作带来冲击。另外,此方法提高全溶液(all-solution)元件制作的可能性,让此材料在连续式滚筒(roll-to-roll)制程的应用上增添不少吸引力,例如薄膜太阳能电池的制作。

研究人员使用一种名为复合金属硫化物(metal chalcogenide complex)的材料,来将胶体状的纳米晶体相互黏合。其配位基较先前使用的有机配位基更为稳定、坚固,而且不会改变纳米晶体的化学性质,还可让纳米晶体间的电荷转移更有效率。Talapin等人确实观察到系统中的导电率有增加的趋势。

目前,该团队正在研究如何在实际应用上使用纳米晶体的连接技术,并且调查除了金属硫化物材料外,是否还有其它合适的材料。芝加哥大学已授权Evident Technologies公司在热电应用上采用此技术。详见Science DOI: 10.1126/science.1170524

此外,胶状半导体量子点与软式微影术(soft lithography)及喷墨印刷术(in-jet printing)等常见的制程相容。Gamelin认为胶体可望成为纳米科技在各种元件应用上的新工具箱。详见Science 325, p.973 (2009); DOI: 10.1126/science.1174419

应用

量子点LED可以达到接近连续光谱,高演色性的特性;目前人工光源只有高耗能的白炽灯、卤素灯能达到连续光谱的特性,是LED、萤光灯无法取代的重要特性;量子点LED可望满足光线品质及健康较为要求使用者,达到全面淘汰高耗能光源的目标。

量子点显示技术可以达到更好的色彩显示特性。
童话仙子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
量子点LED可以达到接近连续光谱,是不是现在海洋光学准备以后使用这个做光源呀?难道不用激光光源了??用量子点LED代替吗??
喜乐 平安
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 省部重点实验室(gl19860312) 发表:
原文由 喜乐 平安(oceanstark) 发表:
原文由 dahua1981(dahua1981) 发表:
量子一听就很高深的东西了


是感觉挺高深的~~~~~~~ 是种纳米材料~~~~

  dahua老师有什么见解啊??


化材院 化工院也有很多做的

要做的前沿级别的就不容易~\(≧▽≦)/~啦啦啦


嗯~~~就是不知道目前搞这方面研究的专家老师们做到什么程度了~~~~
喜乐 平安
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 童话仙子(liling123436) 发表:
在这里的估计研究量子的不多吧?老师一出手就不同凡响呀


~~~木有木有  不敢这样,我是新人一枚。
喜乐 平安
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 童话仙子(liling123436) 发表:
原文由 喜乐 平安(oceanstark) 发表:
        大家知道目前有哪些老师在做量子点的研究么??

oceanstark老师的题目又让俺重新了解了一下量子点的皮毛知识,十分感谢,顺便把知识也发上来了,但愿能普及一下量子点的知识


谢谢仙子的科普啊~~~~~~
喜乐 平安
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 童话仙子(liling123436) 发表:
量子点LED可以达到接近连续光谱,是不是现在海洋光学准备以后使用这个做光源呀?难道不用激光光源了??用量子点LED代替吗??


不是滴, 在考虑代替荧光~~~~
手机版: 量子点的研究?
品牌合作伙伴