主题:【分享】基于近红外原理测定食味值,大米食味计不断更新迭代

浏览0 回复0 电梯直达
Insm_68f50e17
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
食味计是日文汉字,国人从最初开始一直沿用至今,也就成为了中文专用术语。

基于近红外原理的大米食味计是一款测量对象单一(糙米,精米)、检测项目固定(蛋白质、直链淀粉、水分、脂肪)、显示食味数值的专用仪器,在短波近红外波段范围内采集光谱。

大米食味计的诞生与日本大米混合之后再销售的习惯有关。每年10月左右收获的新米很好吃,一旦过了第二年春天味道就差了。但有一种从初春开始就觉得既便宜又好吃的大米,这就是混合米。

混合米虽然容易被认为是劣质商品,但它也是消费者和生产者为了享受美味的智慧。混合大米是为了激发大米的美味,与碾米技术一起可以说是大米销售商的秘诀。一方面抓住当地消费者的喜好,另一方面抓住大米产地的特点进行混合。大米混合的目的是:

(1)稳定和提高食味,消除全年食味波动。

(2)确保数量。因为优质米数量有限,所以要通过混合功能来确保口感好的大米供应数量。

(3)应对大米供求情况。为了避免歉收时陷入大米不足的困境,需要将陈米混合进行销售。

(4)满足消费者希望的价格。大米的销售价格主要与原料大米的价格有关,但也要根据混合大米的价格和口味来决定。

大米食味的数值化能为大米混合提供更为科学的依据,由此食味计应运而生。因此食味计是一种快速鉴定大米品质的无损检测仪器。

大米食味计的发展共分为三个阶段:

(1)利用市售滤光片型仪器,采集粉碎后大米的长波段近红外反射光谱;

(2)利用滤光片型食味计,采集整粒大米的短波段近红外透射光谱;

(3)利用食味计,采集整粒大米的短波段近红外连续透射光谱。

1986年,日本佐竹公司研发出了世界第一台大米食味计TB1A型(图1),当时的食味计主要用于两种情况。一是只要指定食味值,就能得到价格最便宜的混合米组合;二是一旦设定价格,可以选出食味值最高的大米混合。可有效地进行粮库管理。

图1 第一台食味计



第一台食味计内置德国Bran+luebbe公司的近红外仪器,先将精白米粉碎后测量近红外反射光谱,利用多元线性回归建模,预测直链淀粉、蛋白质、水分等成分的含量。

C=F1log1+F2log2+……Fnlogn+F0

C是成分含量,log1 ~ logn是各波长下的吸光度,F0 ~ Fn是上述权重系数。

其次,前记各成分的多项式的食味用判断式代入各成分的值,算出食味值。食味判定公式主要内容为:

K=(直链淀粉含量)1.0×(蛋白质含量)0.3×{15〔15-水分含量〕}0.75

T=50000/K2


K为食味关联值,T为食味值。T值越大越好[1]。由此得到的食味值和感官测试相关如图2所示。相关系数足以满足实际使用要求[2]

图2 感官评价与食味值的关系



同期,还有另外两种原理推测食味值。一是依据大米的食味与镁、钾、氮的含量,二是依据蛋白质含量和碘呈色度程度[3]。不过,现在都是依据蛋白质、直链淀粉、脂肪、水分进行预测了。

20世纪90年中期开发出对糙米和精米进行全粒测定的近红外透过型分析仪。当时有7家公司在市面上进行销售。透射型分析仪与反射型分析仪相比,采用了1100nm以下的短波长范围和低价格的硅检测器,因此分析仪的价格较低。

佐竹制作所的CTA10A和CTA10B两种分析仪光源都是采用卤素灯,波长为600 ~ 1100nm,10个固定波长透过型分析仪,二极管是硅光电二极管[4]

20世纪90年代后期,估计有4000 ~ 5000台食味计应用到生产现场。后因食味值推测精度并不高,而且各制造商之间的食味计检测精度差异较大,逐渐被遗忘。还有,直链淀粉的检测精度低至0.8%1.2%,只能被视为参考值。另一方面,蛋白质全粒透过型检测精度为0.25%0.35 %,达到实用要求,作为筛选优质(低蛋白质)大米被广泛应用。水分的检测精度也在0.15%0.20%,与电阻式水分计毫不逊色,也被用在生产现场[5]

2010年1月,日本佐竹公司开始销售测量精度更高、轻量紧凑化的新型米粒食味计RLTA10A(图3)。历经24年的发展,食味计机型升至第四代,至今仍是主流产品。RLTA10A是机型RCTA11A的后继机种,继承了简单、快速测量功能等特点。新机型不论是在检测技术还是检测精度方面都得到了大幅提升。采用近红外透射连续波长方式,在提高测量精度的同时,实现了重量比以往机型减少20%、容积减少37%的轻量紧凑化。因为是大型彩色液晶触摸面板方式,所以操作方便,打印机内置。可以用U盘直接保存数据,还可以和佐竹公司的谷粒辨别器连接。

图3 佐竹公司第四代食味计RLTA10A



随着市场需求和技术的发展,1996年,佐竹公司又开发了世界首创米饭食味计(图4、5)。

图4 米饭食味计

图5 米饭食味计原理图



该米饭食味计测量近红外光谱方法比较简单。利用两组滤光片3个波长采集反射光量(540nm,970nm)和透射光量(540nm,640nm)。好米和次米蒸出的米饭反射光有差异,用540nm的反射光观察米饭的外观。用540nm和970nm两种波长分析米饭水分差异。蒸好饭后1-2小时,540nm不论是在反射光模型还是在透射光模型中的相关系数均很高,但当蒸好饭后1224小时,透射光传感器的变化量往往是反射光变化量的几倍。选用640nm评价米饭变质程度,例如黄变或褐变[6]。米饭食味计共测量五项指标,具体如下:

①外观。米饭的α化(糊化)程度越高,外观越闪亮。共分为10个等级,等级越高越好。

②硬度。光学方法测定米粒中蛋白质含量的变化。共分为10个等级,等级越高越硬。

③黏性。光学测量由直链淀粉含量变化决定的黏性。共分为10个等级,越高越有黏性。

④平衡度。用粘性/硬度计算,倍数化。共分为10个等级,越高越好。

⑤食味值。米饭美味度的综合评价。有光泽,越透明糊化的越好,判定为好的食味。100级评价。

虽然早期在日本有多家公司生产大米食味计,时至今日主要就是佐竹公司和静冈制机公司。静冈制机公司紧随佐竹公司其后,于1989年开始销售大米食味计RA-6101,如图6所示。2016年,静冈制机公司又推出了最新一代高精度近红外食味分析仪SRE(图7),将大米食味计检测精度提高到了一个新高度。

图6 静冈制机开发的第一台食味计 RA-6101

图7 静冈制机食味计 SRE



静冈制机对用户反映的检测精度原因进行了详细梳理,得出波长漂移占45%,温度干扰占28%,其它化学值误差占10%,其它占17%。发现波长如果发生1nm漂移,将导致0.63%的蛋白质检测误差,要想满足检测精度要求,必须把波长漂移误差控制在0.3nm以下。另外,通过统计分析找到一个与蛋白质相关性极高的特征波长,并对仪器采取控温措施,建模后蛋白质的检测精度高达SEP=0.11%,逼近化学值的检测误差。由此获得日本农林水产省和北海道设施协会的资质认定,并作为国际米食味品鉴大会唯一指定的检测设备,享誉国内外。

食味计预测大米直链淀粉的精度未达标问题一直困扰着食味计的普及应用,为此,北海道生物系特定产业技术研究支援中心尝试利用近红外光谱分析制作直链含量预测模型及综合近红外光谱分析和可见光分析信息的二次建模,开发出直链淀粉含量预测标准误差(SEP)不到1%的非破坏性测量技术。

利用近红外光谱分析(BR-5000、静冈制机)、可见光分析(ES-1000、静冈制机)、建模、评价按品种群制作。第一阶段,根据近红外光谱分析和参考分析值,PLS回归分析建立模型。第二阶段,近红外光谱分析的直链淀粉含量预测值(NIR)及蛋白质含量预测值(PC)、可见光分析的PP值(整粒比例、未成熟粒比例、粒长、粒宽)共6个项目为自变量进行多元回归分析建立了两个阶段的模型。对各个模型,进行直链淀粉含量预测精度的评价。其结果如图8所示,糙米的直链淀粉SEP=0.43%,精米是0.42%。满足了实际生产要求[7]

图8 大米直链淀粉二次建模(NIR+VIS)结果



静冈制机即将在2024年1月中旬推出最新小型食味计TMX-1(图9),其技术特点是能计算出样本的最佳测量时间,能经常进行低噪声测量。因为得到了最佳光谱,所以信号噪声降低了,可以计算出更准确的测量值(图10)。从硬件和软件两方面好好地修正测量环境温度和样品温度引起的测量误差(图11)。测量值的校正可以通过基准样本自动进行。由于可以自动进行繁琐的偏差计算和调整,所以便于精度管理。也能降低多台导入时的机差[8]

图9 最新小型食味分析計TMX-1

图10 新旧机型光谱示意图

图11 新旧机型温度的影响示意图



综观近红外仪器发展史,不论是通用仪器还是专用仪器,还没有一款仪器像食味计一样不断更新换代,足以证明食味计在大米加工应用的重要性和紧迫性。

参考文献

[1]佐竹专利:米の食味測定方法及び装置JPA 1987291546

[2]保坂幸男:ポストハーべースト最新技術事情,農業機械学会誌第51巻 第2号

[3]河野澄夫:近赤外分光分析法による非破壊品質評価,化学と生物 Vol.28, No.6,1990

[4]川村周三,竹倉憲弘,伊藤和彦:近赤外透過型分析計による米の成分測定の精度とその改善,農業機械学会誌64(1): 120~126, 2002

[5]夏賀元康?渡部美里?川端 匠?片平光彦:携帯型分析計による米の品質測定のための基礎研究,農業機械学会誌 75(6):393402,2013

[6]三上隆司,柏村崇,土屋義信,西尾尚道:可視光および近赤外光 による米飯の官能値評価,日本食品科学工学会誌 第47巻 第10号2000年10月

[7]川村周三(2018),第 34 回近赤外フォーラム(札幌市),近赤外分光と可視光を利用した米の自動品質検査システムの開発

[8]静冈制机公司网页,https://www.shizuoka-seiki.co.jp/

[来源:仪器信息网] 未经授权不得转载


为您推荐
您可能想找: 近红外光谱(NIR) 询底价
专属顾问快速对接
立即提交
猜你喜欢 最新推荐 热门推荐
品牌合作伙伴