主题:1.1原子吸收光谱分析概述

浏览0 回复15 电梯直达
shime
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
AAS(atomic absorption spectroscopy)
原子吸收光谱分析法(AAS)是一种测量特定气态原子对光辐射的吸收的方法。


原子吸收分光光度法和我们以前在分析化学中学过的吸光光度法有很多的相似之处。这里将通过对比的方式,在简单的复习一般吸光光度法的基础上引入原子吸收分光光度法的概念。


1.1 原子吸收光谱研究的历史
人们对光吸收现象的研究始于18世纪初叶。光吸收现象是指光辐射在通过晶体或液体介质后,其辐射的强度和方式会发生变化的现象。通过研究这种光辐射吸收现象,人们注意到:原始的光辐射在经过吸收介质后,能量可以分为三个部分:(1)散射的,(2)被吸收的,(3)发射的辐射。根据粒子从基态到激发态对辐射的吸收原理可以建立各种吸收光谱法,如分子、原子吸收光谱分析;相反,根据粒子从激发态到基态的光能辐射可以建立各种荧光发射光谱分析,只是在测量方向上和光路垂直。原子吸收光谱法发展经历了这样的几个发展阶段:

1.1.1 对原子吸收现象的初步认识

因为太阳光是最普通的光源,所以光谱学和吸收光谱法的历史,与对太阳光的观察是紧密相联的。

文献中有记载最早的对原子吸收光谱现象的发现是在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,曾指出在太阳连续光谱中存在着许多条的暗线。几年以后,弗兰霍夫(Fraunhofer)在研究太阳连续光谱时,又独立地再次观察到了这些暗线,并详细地研究了这种现象,所以人们称这些暗线为弗兰霍夫线,但在当时还没有人能阐明产生这种暗线的原因。1832年,研究其它现象的英国人布鲁斯特(D. Brewster) 首先对弗兰霍夫线产生的原因作了基本上是正确的解释。在对白光通过一氧化氮时的谱线吸收现象进行了观察后,他认为弗兰霍夫线是由于太阳外围大气圈中比光源温度低的气体吸收了从光源发出的光的缘故。然而真正对这种吸收现象作出确切解释的还是本生(R. Bunsen)和克希荷夫(G. Kirchhoff)。1860年他们在对碱金属和碱土金属光谱的火焰光谱,以及在这些光谱中所伴生的谱线自蚀现象作系统研究后,证实了钠蒸气发出的光通过比该蒸气温度低的钠蒸气时,会引起钠谱线的吸收。根据钠发射线和弗兰霍夫线在光谱中位置相同这一事实,证明太阳连续光谱中的暗线D线,正是太阳外围大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果,建立了这种吸收的基本原理。。因此可以认为这是历史上用原子吸收光谱进行定性分析的第一个例证。这种现象可用来测定火焰的温度。
下图是该经典实验的装置图。

R. Bunsen和G. Kirchhoff研究钠光谱中谱线自蚀的实验装置。连续光源发射的光经透镜L聚焦后通过Bunsen燃烧器B的火焰,并将一小勺氯化钠引入到火焰,光束被棱镜P色散后在屏幕S上进行观察,钠D线以一黑色不连续光谱形式出现在连续光谱的另一端。


图 1

这个实验证明:把钠盐送入火焰而发射出的黄色的钠线,相当于太阳光谱的暗D线。这样,D线可能是由于在太阳的气圈中有钠原子存在。他们还得出结论说,观察太阳和某些其他行星的光谱线,可以了解其大气成分。发射和吸收光谱之间的关系已由G. Kirchhoff精确地列出公式。按照克希霍夫定律,所有物质都吸收与其发射光波长相等的光。这个定律具有普遍的正确性,阐明了发射和吸收之间的关系,并说明任何能够发射给定波长辐射的物质都能吸收同一波长的辐射。然而在实际上。它通常只应用于气态物质。
1902年,R.. Woodson将钠D2线通过钠蒸气,发现了只辐射D2线的这种共振辐射现象。后来,他又利用从水银电弧发出的波长为253.7nm谱线被水银蒸气吸收这一现象,对空气中的水银进行了测定,为工业上对空气中汞浓度的测定奠定了基础。
在G. Kirchhoff工作及其它一些观测的基础上,1900年Planck建立了光的吸收和发射的量子理论。根据这一理论,原子只能吸收某一确定波长(频率)的辐射,即原子只能吸收和释放某一确定的能量?

?、?和?的特征值视原子而异。
继G. Kirchhoff的工作之后,到1920年左右,原子吸收光谱的理论研究方面有了较大的发展,确定了吸收值和某些原子常数之间的关系,阐明了谱线变宽效应以及在这些效应下谱线的形状,制定了原子吸收测定方法。但是原子吸收的原理仍然主要被天文学家用来测定星球大气中金属的浓度。这种测定方法,需要有热电离理论(萨哈,Saha,1929年提出)和线吸收系数理论。定量估价原子浓度的一个重要概念称为原子的“振子强度”。测定谱线吸收的实验基础,在于测量不同元素和不同谱线的振子强度。要做到这点,需确切了解吸收介质中自由原子的浓度,这样一来实验方法就比较复杂,以致这些方法不适宜用作化学分析。产生这种情况的主要原因是未能找到一种解决测量原子吸收系数的实用方法。
唯一例外是空气中汞浓度的测定。
汞元素广泛用于工业生产,毒性很强,而且在大气中测量它很困难。但由于它的特性,即使在室温下汞也具有足够高的蒸气压,这样,利用它的共振线吸收,AAS很易用于汞的测定。基于此种原理而设计的第一台仪器,在本世纪三十年代早期已经问世。直到1950左右,AAS在分析化学方面的应用,还只限于测定大气中的汞蒸气,它并未引起人们应有的重视。
如上所述,虽然G. Kirchhoff早已在1860年就认识了原子吸收的原理,并且此理论基础在以后的几十年中又不断有所发展,但这一方法的实际意义却在很长的一段时间内没有被人们所认识。
1.1.2 技术突破和在分析化学上的应用
原子吸收分光光度法作为一个样品成分分析方法出现以后,也经历了一个发展的过程。其中用火焰作吸收介质的原子吸收分光光度法,是早期发展的主要原子化方法。
1.1.2.1 空心阴极灯的发明
由于产生气态自由原子的困难,妨碍了原子吸收在测定其他元素上的应用。随着发射火焰光度法的发展,发现把细散的试样投入火焰,即可获得一个相当简单的和具重现性的方法。在火焰温度下,大部分的化合物蒸发和解离,致使火焰气体含有很多元素的自由原子。尽管有这样众所周知的事实,使用这种火焰于吸收测量的可能性仍未引起重视。
原子吸收的带宽仅有百分之几埃的数量级。要在如此窄的带宽中,准确测定随频率急剧变化的积分吸收系数,在商品仪器中是难以实现的,也无法保障足够的信噪比。1953年,澳大利亚物理学家沃尔什(A.Walsh) 建议采用原子吸收光谱作为一种化学分析法 。但是,原子吸收光谱法实际上正式诞生于1955年,Walsh发表了一篇论文“The application of atomic absorption spectra to chemical analysis”, 在他的论文中指出可以用简单的仪器作原子吸收分析,提出了峰值吸收测量原理——通过测量峰值吸收系数来代替积分吸收系数的测定。峰值吸收系数与待测原子浓度存在线性关系。他还提出,采用锐线光源是可以准确测定峰值吸收系数的。空心阴极灯是一种实用的锐线光源。这就解决了实际测量的困难。人们很早就对空心阴极灯辉光放电现象进行了光谱研究,为空心阴极灯作为一种稳定的锐线光源提供了理论依据,从而使在二十世纪五十年代提出的原子吸收分析的蜂值吸收测量,有了实际可能。



在文章中,他还强调指出这个方法的优点:原子吸收光谱法和发射法不同,它具有与跃迁激发电压无关,很少受温度变化及其它辐射线或原子间能量交换的影响等优点。这一论文奠定了原子吸收分光光度法的理论基础,开拓了它广泛应用的前景。
另外,在这一年中,阿尔克马德(A1kemade)和米拉兹(Milatz )也独立地发表了几篇文章,建议将原子吸收光谱法作为常规的分析方法。这些文献促使火焰光谱学的分析应用得到人们的重视。
在此之后的几年中,主要是Walsh和他在澳大利亚联邦科学和工业研究机构的合作者们将原子吸收发展成为一种具有高灵敏度和高选择性的定量分析技术,并命名为原子吸收分光光度分析 (atomic absorption spectroscopy)。Walsh不仅在发展该方法的理论基础方面享有声誉,并在实际应用和仪器原理方面也做出了贡献。1960年,在他的文章“Hollow-cathode discharge---the construction and characteristics of sealed-off tubes for use as spectroscopic light source.”中提出使用空心阴极灯作为AAS测定的灯光源,解决了原子吸收光谱的光源问题。与此同时,荷兰的J. T. J. A1kemade也报道了采用火焰的吸收实验。自此以后,不少作者对这一方法的理论和实验作了进一步的研究和探索,并且研制出各种型号性能优良的仪器和元素灯,加速了这一新技术的发展和应用。
原子吸收分光光度法作为一个强有力的分析测试手段开始得到广泛应用与飞跃发展,还是1955年以后的事情。其发展的速度和规模,仅从以下的数字就可以看出来。自1954年在澳大利亚墨尔本物理研究所展览会上展览出第一台简单的原子吸收分光光度计,到50年代末 PE 和 Varian公司推出了原子吸收分光光度计商品仪器,促
为您推荐
您可能想找: 原子吸收光谱(AAS) 询底价
专属顾问快速对接
立即提交
tzl75
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
shime
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
告诉你你也不会拷贝,哈哈,都是我从网上整理下来的
tzl75
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
shime
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
tzl75
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
liyangxue
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
xslyq
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
iluvm
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
tzl75
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
harveyh
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
品牌合作伙伴