主题:【资料】生化基础(共7讲)

浏览0 回复9 电梯直达
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的分离纯化(上) 


一、 沉淀法沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。 1、盐析法盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。 2、有机溶剂沉淀法有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。 3、蛋白质沉淀剂蛋白质沉淀剂则仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。 4、聚乙二醇沉淀作用聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。 5、选择性沉淀法根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。 二、 吸附层析 1、 吸附柱层析吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。 2、 薄层层析薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。 3、 聚酰胺薄膜层析聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。 三、 离子交换层析离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。` 四、 凝胶过滤凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。 五、 亲和层析亲和层析的原理与众所周知的抗原一抗体、激素一受体和酶一底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的废物(S^)才能和一定的酶(E)结合,产生复合物(E-S^)一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶一底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把围相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲 液的PH值、或增加离子强度、或加人抑③剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰(见图6-2)。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。 上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。 六、 聚焦层析聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。
为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的分离纯化 (中)


聚焦层析原理可以从PH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。 1、PH梯度溶液的形成在离子交换层析中,PH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子 剂进行层析时,制备PH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室(这层析柱者)中装高PH溶液,而在另一室装低PH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的PH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故PH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94 (作固定相)时,先用起始缓冲液(配方见表了一2)平衡到PHg,再用含PH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加人,住内每点的PH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了PH6~9的梯度。聚焦层析柱中的PH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,PH梯度会逐渐向下迁移,从底部流出液的PH却由9逐渐降至6,并最后恒定于此值,这时层析柱的PH梯度也就消失了。 2.蛋白质的行为蛋白质所带电荷取决于它的等电点(PI)和层析柱中的PH值。当柱中的PH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的PH值是随着淋洗时间延长而变化的。当蛋白质移动至环境PH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境PH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。 不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。 3。聚焦效应蛋白质按其等电点在PH梯度环境中进行排列的过程叫做聚焦效应。PH梯度的形成是聚焦效应的先决条件。如果一种蛋白质是加到已形成PH梯度的层析柱上时,由于洗脱液的连续流动,它将迅速地迁移到与它等电点相同的PH处。从此位置开始,其蛋白质将以缓慢的速度进行吸附、解吸附,直到在等电点PH时被洗出。若在此蛋白质样品被选出前,再加人第二分同种蛋白质样品时,后者将在洗脱液的作用下以同样的速度向前移动,而不被固定相吸附,直到其迁移至近似本身等电点的环境处(即第一个作品的缓慢迁移处).然后两分样品以同样的速度迁移,最后同时从柱底洗出。事实上,在聚焦层析过程中,一种样品分次加人时,只要先加入者尚未洗出,并且有一定的时间进行聚焦,剩余作品还可再加到柱上,其聚焦过程都能顺利完成,得到的结果也是满意的。 七、 气相色谱多种组分的混合样品进人色谱仪的气化室气化后呈气态。当载气流入时,气化的物质被带人色谱柱内,在固定相和流动相中不断地进行分配.在理想状态下,溶质于气一液两相间的分配可用分配系数Kg描述。当分配系数小时,溶质在柱中就停留时间短,也即滞留因子(Rf)大,所以它将首先从色谱柱流出而进人鉴定器,经放大系统放大后,输出讯号便在记录仪中自动记录下来,这时呈现的图形为色谱图,亦称色谱峰;当分配系数大时,溶质在柱中停留时间就长,其色谱图在记录仪上后出现。由于不同物质有不同的分配系数,所以将一混合样品通过气一液色谱柱时,其所含组分就可得到分离。 气相色谱柱效率高、分辨率强的重要原因是,理论塔板数(N)大。毛细管气相色谱的 N可达105~6。增加理论塔板数和降低样品组分的不同分子在展层中扩展程度(速率理论),就可明显地提高柱效。以下将讨论塔板理论和速率理论对柱效的影响: 1.塔板理论塔板理论是将色谱假设为一个蒸馏塔,塔内存在许多块塔板,样品各组分在每块塔板的液相气相间进行分配,在柱内塔板间高度H(即理论塔板高度)一定时,在有效范围内,柱子越长,N也就越大,样品各组分分配次数也就越多,分辨率自然提高;若柱长一定时,塔板理论高度H越小,就越能增加样品各组分的分配次数,进而提高其分辨率。因此 N=L/H 在线性分配和忽略塔板间纵向扩散的条件下,根据样品组分的保留时间tr、峰宽W或半峰高宽度2ΔXi,Martin导出了计算N的公式,样品组分峰宽度值越小,理论塔板数越高。实际上,进行色谱分析时,峰宽度值的大小是衡量分辨率高低的一个尺度。 2.速率理论根据塔板理论,在H(塔板理论高度)一定时,增加柱长可以提高柱效。但是,柱子过长,将会延长分析时间,降低检测的灵敏度。所以实践中应设法降低H,提高柱效。 速率理论主要是分析同一样品的不同分子,在色谱柱中迁移速度差异所引起色谱峰的扩张程度。而涡流扩散、纵向分子扩散和质量传递(包括流动相传质和固定相传质)等因子与速率理论值(H)的密切关系可用下面的公式表示: H=A+B/U+C 涡流扩散(A)是由于样品组分随着流动相的移动通过固定相颗粒不均匀的色谱柱时,引起同一组分的不同分子在流动相中形成不规则的"涡流",致使色谱峰变宽、柱效降低。如固定相颗粒均匀、直径小时,则可降低"涡流"现象发生。 纵向扩散(B/U)亦称分子扩散项。纵向扩散与样品分子在色谱柱中的流畅程度(有无阻碍)、流动相的速度(U)等因子有关。因此,降低溶质在流动相中扩散系数和缩短溶质在流动相中停留时间,均可降低纵向扩散。 传质阻力(Cu):溶质分子在气相与气液界面进行交换所受的阻力,以及在进入固定相液膜传递的差异性统称传质阻力。传质阻力分别与固定相颗粒直径的平方和固定相液膜厚度成正比关系。
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的分离纯化 (下)


八、 高效液相色谱高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。 1.进样系统一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2.输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4. 4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 3.分离系统该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。 另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。 再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。 4.检测系统高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。 (1)紫外检测器该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。 (2)示差折光检测器凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。 (3)荧光检测器凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14g/ml),痕量分析和梯度洗脱作品的检测均可采用。 (5)数据处理系统该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的分析鉴定方法(上) 

一、 沉淀法沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。 1、盐析法盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。 2、有机溶剂沉淀法有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。 3、蛋白质沉淀剂蛋白质沉淀剂则仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。 4、聚乙二醇沉淀作用聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。 5、选择性沉淀法根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。 二、 吸附层析 1、 吸附柱层析吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。 2、 薄层层析薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。 3、 聚酰胺薄膜层析聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。 三、 离子交换层析离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。` 四、 凝胶过滤凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。 五、 亲和层析亲和层析的原理与众所周知的抗原一抗体、激素一受体和酶一底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的废物(S^)才能和一定的酶(E)结合,产生复合物(E-S^)一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶一底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把围相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲 液的PH值、或增加离子强度、或加人抑③剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰(见图6-2)。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。 上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。 六、 聚焦层析聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。 聚焦层析原理可以从PH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。 1、PH梯度溶液的形成在离子交换层析中,PH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子 剂进行层析时,制备PH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室(这层析柱者)中装高PH溶液,而在另一室装低PH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的PH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故PH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94 (作固定相)时,先用起始缓冲液(配方见表了一2)平衡到PHg,再用含PH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加人,住内每点的PH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了PH6~9的梯度。聚焦层析柱中的PH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,PH梯度会逐渐向下迁移,从底部流出液的PH却由9逐渐降至6,并最后恒定于此值,这时层析柱的PH梯度也就消失了。 2.蛋白质的行为蛋白质所带电荷取决于它的等电点(PI)和层析柱中的PH值。当柱中的PH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的PH值是随着淋洗时间延长而变化的。当蛋白质移动至环境PH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境PH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。 不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。 3。聚焦效应蛋白质按其等电点在PH梯度环境中进行排列的过程叫做聚焦效应。PH梯度的形成是聚焦效应的先决条件。如果一种蛋白质是加到已形成PH梯度的层析柱上时,由于洗脱液的连续流动,它将迅速地迁移到与它等电点相同的PH处。从此位置开始,其蛋白质将以缓慢的速度进行吸附、解吸附,直到在等电点PH时被洗出。若在此蛋白质样品被选出前,再加人第二分同种蛋白质样品时,后者将在洗脱液的作用下以同样的速度向前移动,而不被固定相吸附,直到其迁移至近似本身等电点的环境处(即第一个作品的缓慢迁移处).然后两分样品以同样的速度迁移,最后同时从柱底洗出。事实上,在聚焦层析过程中,一种样品分次加人时,只要先加入者尚未洗出,并且有一定的时间进行聚焦,剩余作品还可再加到柱上,其聚焦过程都能顺利完成,得到的结果也是满意的。
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的分析鉴定方法 (下)


七、 气相色谱多种组分的混合样品进人色谱仪的气化室气化后呈气态。当载气流入时,气化的物质被带人色谱柱内,在固定相和流动相中不断地进行分配.在理想状态下,溶质于气一液两相间的分配可用分配系数Kg描述。当分配系数小时,溶质在柱中就停留时间短,也即滞留因子(Rf)大,所以它将首先从色谱柱流出而进人鉴定器,经放大系统放大后,输出讯号便在记录仪中自动记录下来,这时呈现的图形为色谱图,亦称色谱峰;当分配系数大时,溶质在柱中停留时间就长,其色谱图在记录仪上后出现。由于不同物质有不同的分配系数,所以将一混合样品通过气一液色谱柱时,其所含组分就可得到分离。 气相色谱柱效率高、分辨率强的重要原因是,理论塔板数(N)大。毛细管气相色谱的 N可达105~6。增加理论塔板数和降低样品组分的不同分子在展层中扩展程度(速率理论),就可明显地提高柱效。以下将讨论塔板理论和速率理论对柱效的影响: 1.塔板理论塔板理论是将色谱假设为一个蒸馏塔,塔内存在许多块塔板,样品各组分在每块塔板的液相气相间进行分配,在柱内塔板间高度H(即理论塔板高度)一定时,在有效范围内,柱子越长,N也就越大,样品各组分分配次数也就越多,分辨率自然提高;若柱长一定时,塔板理论高度H越小,就越能增加样品各组分的分配次数,进而提高其分辨率。因此 N=L/H 在线性分配和忽略塔板间纵向扩散的条件下,根据样品组分的保留时间tr、峰宽W或半峰高宽度2ΔXi,Martin导出了计算N的公式,样品组分峰宽度值越小,理论塔板数越高。实际上,进行色谱分析时,峰宽度值的大小是衡量分辨率高低的一个尺度。 2.速率理论根据塔板理论,在H(塔板理论高度)一定时,增加柱长可以提高柱效。但是,柱子过长,将会延长分析时间,降低检测的灵敏度。所以实践中应设法降低H,提高柱效。 速率理论主要是分析同一样品的不同分子,在色谱柱中迁移速度差异所引起色谱峰的扩张程度。而涡流扩散、纵向分子扩散和质量传递(包括流动相传质和固定相传质)等因子与速率理论值(H)的密切关系可用下面的公式表示: H=A+B/U+C 涡流扩散(A)是由于样品组分随着流动相的移动通过固定相颗粒不均匀的色谱柱时,引起同一组分的不同分子在流动相中形成不规则的"涡流",致使色谱峰变宽、柱效降低。如固定相颗粒均匀、直径小时,则可降低"涡流"现象发生。 纵向扩散(B/U)亦称分子扩散项。纵向扩散与样品分子在色谱柱中的流畅程度(有无阻碍)、流动相的速度(U)等因子有关。因此,降低溶质在流动相中扩散系数和缩短溶质在流动相中停留时间,均可降低纵向扩散。 传质阻力(Cu):溶质分子在气相与气液界面进行交换所受的阻力,以及在进入固定相液膜传递的差异性统称传质阻力。传质阻力分别与固定相颗粒直径的平方和固定相液膜厚度成正比关系。 八、 高效液相色谱高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。 1.进样系统一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2.输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4. 4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 3.分离系统该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。 另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。 再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。 4.检测系统高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。 (1)紫外检测器该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。 (2)示差折光检测器凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。 (3)荧光检测器凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14g/ml),痕量分析和梯度洗脱作品的检测均可采用。 (5)数据处理系统该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。 
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质的顺序分析 



蛋白质顺序分析即是指测定蛋白质多肽链的氨基酸排列顺序,又称蛋白质的一级结构分析。   测定方法一般需要以下的技术和步骤:蛋白质的纯化,测定分子量,分析辅基或配基,氨基酸定量组成分析,末端分析,拆开二硫键,肽的裂解、纯化及顺序测定,寻找接头肽以连接成完整的肽链,再经过二硫键定位,最后列出完整蛋白质的顺序。   蛋白质的纯化 待测定顺序的蛋白质样品,需要较高的纯度。须通过多种方法鉴定,如末端分析、电泳、等电聚焦、氨基酸定量组成分析等都证明是均一的蛋白质,杂质含量在5%以下,才适于做顺序分析。   测定分子量 一般用凝胶过滤法,十二烷基硫酸钠聚丙烯酰胺凝胶电泳法。从两种数据,还可知道样品蛋白质是否有亚基结构。   辅基和配基分析 简单蛋白质不含辅基和配基。但结合蛋白质含糖、核酸、脂质或其他有机化合物,这些物质会干扰顺序分析,需采用特殊方法除去。   氨基酸定量组成分析 用氨基酸自动分析仪能准确测定蛋白质样品中各种氨基酸的含量,特别是某些氨基酸,如甲硫氨酸、色氨酸、精氨酸和赖氨酸等的含量对设计顺序测定方案很重要。   末端分析 多肽链的一端为NH2,称为N端,另一端为COOH,称为C端。N端测定用FDNB (2,4-二硝基氟苯),DNS-Cl (1-二甲基萘胺-5-磺酰氯)和DABITC(4-NN□二甲基- 胺重氮苯-4^-异硫氰酸酯) 等化学试剂测定。也可用氨肽酶法。C 端用肼解法或羧肽酶法测定。有的蛋白质的N末端被其他化学基团,如乙酰基,或环化谷氨酸所封闭,就不能用上述方法测定。通过末端分析也能了解蛋白质由几条肽链组成和样品的纯度。   拆开二硫键 肽链中的半胱氨酸残基,常以二硫键的方式与肽链中的其他部位半胱氨酸残基连接,测定顺序时须先拆开二硫键,使肽链呈松散的直链,便于降解和裂解。拆开方法是用巯基试剂还原羧甲基化,或用过甲酸氧化等。   肽的裂解和纯化 先将蛋白质裂解成较大的肽段,以减少纯化和顺序测定的工作量。在一般蛋白质分子中,甲硫氨酸、色氨酸和精氨酸等含量较少,可用专一性高的试剂或酶针对这类氨基酸的肽键裂解,如用溴化氰,氢溴酸和胰蛋白酶等,能得到预期的结果。肽的纯化,一般用离子交换层析,凝胶过滤,电泳和纸层析等方法。70年代以来采用高效液相层析仪,其分辨率高,速度快,是纯化肽的最好工具。   肽的顺序测定 ①埃德曼降解法。用化学试剂──异硫氰酸苯酯,能依次从N端逐个把氨基酸残基降解下来。每一步反应得到一个氨基酸衍生物。经多次重复的反应就得到更多的降解产物,分别鉴定后,即可列出肽链的氨基酸顺序。根据这个原理设计的自动顺序仪,一昼夜连续运转,可测出10多个顺序。但由于化学反应率的限制,不可能无限制地降解到底,因为即使在最好的条件下,每步反应率到98%,一般只能测到50 步左右,这时留下的可供反应的N端愈来愈少,杂质愈来愈多,难以继续测定。所以通常需先把肽链裂解成肽段后再测其顺序。   ②酶法测顺序。用氨肽酶能从N端依次降解,用羧肽酶能从C端依次降解。酶解释放氨基酸是个动力学过程,需在不同时间取样定量测定,根据释放的过程列出顺序,由于酶解过程难以控制,此法得到的数据,一般仅为几个氨基酸顺序。   接头肽 在完成许多肽段的顺序测定后,需要寻找接头肽以把各肽段连接起来而完成蛋白质的全部顺序。其连接法如图核糖核酸酶的全部氨基酸顺序所示。用一个字母表示一个氨基酸残基:   第1种切法 ABCDEFG HIKLMNOP QRSTVWXYZ    第2种切法  FGHIK OPQRS    完整的肽链 ABCDEFGHIKLMNOPQRSTVWXYZ    二硫键定位 用专一性低的蛋白水解酶,如胃蛋白酶、嗜热菌蛋白酶等水解完整的蛋白质成为小的肽段,经分离纯化,找寻含二硫键的肽段。亚硝基铁氰化钠是二硫键的特殊显色剂。测定这些肽段的氨基酸组成和顺序,即可确定肽链内部二硫键的位置,得到完整的蛋白质的氨基酸顺序。   上面介绍的经典的蛋白质顺序测定法,是非常繁琐而工作量浩大的工作。50年代初测定含51个氨基酸残基的胰岛素花了8年时间,现在用自动化仪器和先进检测工具,只需花一周时间。1978年发表的β-半乳糖苷酶,含1021个氨基酸残基,可以说是经典法测定的顶峰。目前新的快速方法是从核酸(DNA)顺序推测蛋白质顺序,已经广泛采用,因在短期内可测数千个核苷酸顺序,从DNA的三联密码能准确推测出蛋白质的氨基酸顺序。这一方法近年来已经有取代上述经典方法的趋势,但是尽管如此,某些环节还须蛋白质顺序测定的经典法配合。 
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
反义RNA简介 

反义RNA指与mRNA互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病。 一、反义RNA治疗的基本方法  1) 反义寡核苷酸(反义ON):体外合成10至几十个核苷酸的反义ON或反义硫代磷酸酯寡核苷酸序列,用脂质体等将反义ON导入体内靶细胞,然后反义ON与相应mRNA 特异性结合,从而阻断mRNA的翻译。     2) 反义RNA表达载体:合成或PCR扩增获取反义RNA的DNA,将它克隆到表达载体,然后将表达载体用脂质体导入靶细胞,该DNA转录反义RNA,反义RNA即与相应的 mRNA特异性结合,同样阻断某基因的翻译。    二、反义RNA的特点与问题    反义RNA用于基因治疗具有以下特点:     1) 具有特异性强:只阻断靶基因的翻译表达。     2) 安全性好:反义RNA只与特定mRNA结合,不改变基因结构,最终会被RNase水解,不残留。   3) 操作简单:反义ON可大量合成,反义RNA的DNA既可合成又可PCR扩增获得。    4) 靶基因范围广:适应于多种疾病,亦可同时用多个反义RNA封闭多个基因,有可能应用于多基因病。     但是,反义RNA作为基因治疗的常规药物,还存在一些需要解决:    1) 反义RNA的选择设计难:反义RNA与mRNA亲和力、结合的特异性受结合位点两侧序列的二级或三级结构的影响。    2) 有副作用问题:副作用与反义ON的多聚阴离子性质有关,目前有人正在试图去除多聚阴离子性质,减少副作用。   三、反义RNA的应用    反义RNA目前主要用于恶性肿瘤、病毒感染性疾病等。    1)恶性肿瘤:用反义K-ras封闭胰腺癌、肺癌的K-ras癌基因,对癌细胞具有明显的抑制作用。用反义RNA封闭慢性粒细胞白血病的bcr-abl融合基因的表达,能抑制肿瘤细胞的生长。通过反义RNA抑制程序性细胞死亡的拮抗基因bcl-2可提高化疗药对 T淋巴细胞白血病细胞的杀伤作用。反义bcl-2亦可阻碍非何杰金氏淋巴肉瘤的生长。    2)病毒性疾病:HIV的反式激活蛋白反应顺序(TAR)与TAT蛋白结合可促使HIV 转录,当用反义TAR封闭TAR时,可终止HIV的转录,现已取得体外抗HIV的效果。反义 RNA对麻疹病毒也有显著的拮抗作用。    3)其他疾病:用胞间粘着分子的反义ON治疗肠炎病人,70%的病人其症状得到控制。针对CMV的反义ON也用于治疗CMV-视网膜炎病人。针对血管平滑肌细胞增殖的生长因子的反义ON能预防血管成形术后的再狭窄。   
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
基因疫苗简介 


地球上彻底消灭的第一种人类疾病--天花是靠牛痘疫苗来实现的。疫苗已帮助人类抵抗了多种传染性疾病的侵袭。但是,死疫苗不能提供内源性抗原,需多次接种才能起到一般的免疫效果;减毒活疫苗往往存在毒力回升的危险;亚单位疫苗免疫性差;重组疫苗存在安全性等问题。基因疫苗在这种情况下于1993年应运而生。基因疫苗指的是DNA疫苗,即将编码外源性抗原的基因插入到含真核表达系统的质粒上,然后将质粒直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,诱导机体产生免疫应答。抗原基因在一定时限内的持续表达,不断刺激机体免疫系统,使之达到防病的目的。   一、基因疫苗的免疫方法    基因疫苗的免疫方法即基因疫苗的给药途径,目前使用的方法有以下几种:    1)裸DNA直接注射:将裸质粒DNA直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。    2)脂质体包裹DNA直接注射:包裹DNA的脂质体能与组织细胞发生膜融合,而将 DNA摄入,减少了核酸酶对DNA的破坏。注射途径同裸DNA直接注射。    3)金包被DNA基因枪轰击法:将质粒DNA包被在金微粒子表面,用基因枪使包被 DNA的金微粒子高速穿入组织细胞。    4)繁殖缺陷细菌携带质粒DNA法:选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA转化细菌,当这些细菌进入某组织器官后,由于不能繁殖,则自身裂解而释放出质粒DNA。 二、基因疫苗的优越性与问题     基因疫苗被称之为第三代疫苗,自1993年问世后,在短短的5年中发展迅速。它与传统的疫苗相比,具有以下显著的优越性:    1) 抗原基因在体内持续表达产生抗原,不断刺激机体免疫系统产生长程免疫,免疫效果更可靠。    2) 对于易变异的病毒,可以选择各亚型共有的核心蛋白保守DNA序列作基因疫苗,产生跨株系的免疫保护反应,从而避免易变异病毒产生的免疫逃避问题。     3) 一个质粒可插入多个抗原基因,即组成多价基因疫苗,故一种基因疫苗可免疫多种疾病。   4) 基因疫苗具有减毒活疫苗的免疫原性,但不会存在活疫苗的毒力回升的危险。    5) 基因疫苗的质粒DNA无免疫原性,不会像重组疫苗那样诱发针对载体的自身免疫反应,故可重复使用。另外,基因还不会受机体已有抗体的影响,可用于带母体抗体的婴儿。     6) 对于毒性大、危险的病毒,以及难以提取抗原的疫苗,基因疫苗的制备相对安全,容易得多。   7) 基因疫苗制备简单,容易大量生产,且成本低。质粒DNA非常稳定,易于贮存和运输。   8) 使用方便,可以经多种途径给药,不需免疫佐剂等。  基因疫苗作为一类新型疫苗,还有一些方面不完善,在实际应用中还存在一些问题有待解决:     1) 安全性问题:基因疫苗一般不会整合到染色体基因组上,但不能排除少数质粒DNA 插入到染色体上,引起插入突变的可能性。不过目前的动物实验尚未发现发生插入突变的证据。  2) 免疫效率有种属个体差异:各动物之间的免疫效率不一样,这可能与不同动物细胞需要不同启动子有关。同种动物之间也有个体差异,免疫效率往往不能达到百分之百,这可能与抗原基因、给药方法途径、给药量有关。   3) 基因疫苗体内持续表达产生抗原蛋白,可能引发免疫耐受。     4) 基因疫苗的免疫应答机制仍不清楚。   三、基因疫苗的应用    基因疫苗目前主要应用于传统疫苗无法对付的病毒性疾病和恶性疾病,如艾滋病、乙型肝炎、癌症等疾病的治疗和预防。    1)病毒性疾病:世界上第一例基因疫苗是用于治疗艾滋病的HIV基因疫苗。1996 年批准在健康人身上进行预防艾滋病的基因疫苗的I期临床试验。流感病毒不同株间保守性抗原基因疫苗对不同株的流感病毒可产生抵抗力,以防止易变异流感病毒的免疫逃避。乙肝病毒表面抗原基因疫苗、包膜蛋白基因疫苗均可诱发机体产生免疫应答。基因疫苗还被用于其他病毒性疾病的预防,如单纯疱疹病毒 、狂犬病毒、丙肝病毒感染等。    2)癌症:有人用癌胚抗原基因疫苗诱导细胞毒性T淋巴细胞反应来治疗癌症。 Plautz等也将MHC-I抗原基因疫苗治疗腺癌或纤维肉瘤也引发了对肿瘤的细胞毒性作用。     3)免疫调节:在注射针对疾病的基因疫苗的同时,注射编码细胞因子或辅助因子的基因疫苗,有助于增强免疫应答,调节免疫反应方向或免疫反应类型。 
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
什么是基因治疗 


广义的基因治疗是指利用基因药物的治疗,而通常说的狭义的基因治疗是指用完整的基因进行基因替代治疗,一般用DNA序列,主要的治疗途径是ex vivo(间接体内法),即在体外用基因转染病人靶细胞,然后将经转染的靶细胞输入病人体内,最终给予病人的疗效物质是基因修饰的细胞,而不是基因药物。除间接体内法外,还可以用基因药物进行直接体内途径治疗,这些基因药物可以是完整基因,也可以是基因片段(包括DNA或RNA);可以是替代治疗,也可以是抑制性治疗(包括DNA转录水平和 mRNA翻译水平)。基因药物不但可用于治疗疾病,而且可用于预防疾病。这类基因药物治法简单易行,发展迅速,新型基因药物不断产生。 
yhl-87_
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
中毒样本的采集与分析 


实验室分析结果对中毒患者的诊断和救治均有极为重要的意义。临床上要根据不同目的来采集相应的生物或环境标本,进行相应的分析。
    快速毒物检测方法是着眼于病人的抢救,时效性要求高,对分析方法的灵敏度要求不高,多使用一些简单、快速的检测方法。而对重大中毒事件调查及处理定性时,检测方法要可靠性高,多需要较高级的仪器分析设备进行。

一、样品采集及分析方法选用

正确的采集样本,是获得可用的分析结果的基础。

1.环境样本的采集:根据发病情况,采集可疑污染的样本。样品采集量为,食品或化学品200克(ml);水1000毫升;空气50升;用清洁的玻璃器皿、聚乙烯或聚四氟乙烯等容器包装,切勿使用金属或陶土器皿。尽量不加防腐剂或EDTA抗凝剂。

2.生物样本的采集:要结合中毒的时间、毒物在体内的代谢、分布情况等来确定采样方案。如氟乙酰胺中毒数天后最有可能检出的是尿中氟乙酸,而毒鼠强中毒后几个月的血样仍有检测价值。胃内容物是确定中毒的最好检体,尿是分析非挥发性毒物的较好检体;血液是分析一氧化碳中毒的唯一检体,也可用来分析挥发及非挥发性毒物,是毒物检测中最重要的样品。活检材料是最好的毒物样本之一。样本采集量:血5-10毫升;尿100毫升;组织100克。最好用玻璃器皿盛装,尽量不加防腐剂和抗凝剂。对于元素毒物的分析,也可采集全血。

3.标注:样品应密封,并贴上载明样品名称、来源、数量、采样时间与地点、采样人、对样品的处理等信息的标签。

此外,还应注意采集现场对照样,充分考虑到样品污染的可能性,并采取适当的措施加以避免。

二、毒物分析方法

    毒物化学分析方法主要有化学法、经典色谱法及现代仪器分析法。

  化学法的原理是利用化学反应所产生颜色改变、沉淀、结晶等现象进行毒物检定。其优点是简单、快速、经济,可作现场分析。但特异性差,灵敏度和准确度低,常常会有假阳性或假阴性结果。

  经典色谱法有柱色谱、薄层色谱和纸色谱。其原理是利用色谱法将毒物从样品基质中分离出来,然后用化学显色法或光谱法检测。特点是简单、快速、经济,可作现场分析。此方法有一定的特异性。灵敏度和准确度适中。

  现代仪器分析方法最是利用光学原理的光谱分析和物理化学分离原理进行。光度法主要有紫外分光光度法、荧光分光光度法用于有机及无机毒物的检测,原子吸收分光光度法、原子发射分光光度法及原子荧光分光光度法是金属及类金属毒物分析的最可靠手段,这些方法灵敏度、特异性和准确性均较好。

  色谱法是利用不同物质在色谱柱中移动速率的不同进行分离,应用检测器对分离后的物质进行检测。是有机毒物分析的最主要手段。特异性较好,灵敏度和准确度较高。常用的有气相色谱法、高效液相色谱法、薄层色谱扫描法。气相色谱法适用于气体、挥发及半挥发性毒物的分析,尤其是高效毛细管气相色谱柱的应用,使得毒物鉴定的可靠性大大提高。后两者则可用于以药物为代表的难挥发及热不稳定毒物的检测。

  色谱/质谱联用法是将色谱的高分离能力和质谱的高特异性、高灵敏度的特点结合在一起,实现高灵敏度、高可靠性的毒物检定方法。并可对未知毒物进行快速筛选检测。常见的有气相色谱/质谱联用法、高效液相色谱/质谱联用法,前者用于气体、挥发及半挥发性毒物的分析,后者用于难挥发及热不稳定毒物的检测。

  分析方法的选用要考虑待测样品(原形、代谢物)、分析要求(定性、定量)、样品类型、实验室条件,分析目的。还要考虑时效性、准确性、经济性要求。有时毒物有定性结果即可说明问题,而对于那些有环境或内源性本底的毒物,或需评价处理和治疗效果,以及进行临床治疗监测,则必须进行定量分析。临床医生要和毒物分析人员多加沟通,设计出合理的毒物分析方案,并共同参与检测结果的解释。

猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴