主题:【已应助】求助英文文献5篇~

浏览0 回复5 电梯直达
voashan
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
【序号】:1
【作者】: Abraham MH, Gil-Lostes J, Fatemi M.
【题名】: Prediction of milk/plasma concentration ratios of drugs and environmental pollutants.
【期刊】: Eur J Med Chem
【年、卷、期、起止页码】:  2009 Jun;44(6):2452-8
【全文链接】:http://www.sciencedirect.com/science/article/pii/S0223523409000154

【序号】: 2
【作者】: Ng CM.
【题名】: Comparison of neural network, Bayesian, and multiple stepwise regression-based limited sampling models to estimate area under the curve.
【期刊】: Pharmacotherapy
【年、卷、期、起止页码】:2003 Aug;23(8):1044-51.
【全文链接】:http://pharmacotherapyjournal.org/doi/abs/10.1592/phco.23.8.1044.32872?journalCode=phco

【序号】: 3
【作者】: Berno, E.;  Brambilla, L.;  Canaparo, R.;  Casale, F.;  Costa, M.;  Della Pepa, C.;  Eandi, M.;  Pasero, E.
【题名】: Application of probabilistic neural networks to population pharmacokineties
【期刊】: Neural Networks
【年、卷、期、起止页码】: 2003. Proceedings of the International Joint Conference on
【全文链接】:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1223983

【序号】: 4
【作者】: Tze Leung Lai, Mei-Chiung Shih and Samuel P. Wong
【题名】:A New Approach to Modeling Covariate Effects and Individualization in Population Pharmacokinetics-Pharmacodynamics
【期刊】: Journal of Pharmacokinetics and Pharmacodynamics
【年、卷、期、起止页码】: Volume 33, Number 1, 49-74,
【全文链接】:http://www.springerlink.com/content/771423kl74417jv8/

【序号】: 5
【作者】: Neve, M.;  De Nicolao, G.;  Marchesi, L.
【题名】: Nonparametric Identification of Population Models: An MCMC Approach
【期刊】: Biomedical Engineering
【年、卷、期、起止页码】:Jan. 2008 ,Volume: 55 Issue:1 On page(s): 41 - 50
【全文链接】:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404094
为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
灰米奇
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
5okok
附件:
该帖子作者被版主 dong36262积分, 2经验,加分理由:help
yilai1002
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
11111111
附件:
该帖子作者被版主 dong36266积分, 2经验,加分理由:help
yilai1002
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
yilai1002
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
suliaocailiao
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
3333333333333333
ok
附件:
该帖子作者被版主 eginzon2积分, 2经验,加分理由:参与应助
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴