当等离子体中离子种类与分析物离子具有相同的质荷比,即产生质谱干扰。质谱干扰主要有四种,即同量异位素干扰、多原子(或加合物)离子干扰、难熔氧化物离子干扰和双电荷离子干扰。
(1)同量异位素干扰
当两个元素的同位素具有相同质量时就存在同量异位素干扰。对四极杆质谱仪来说,同质量类指的是质量差小于一个原子质量单位的同位素。使用高分辨率仪器时质量差可以更小些。
周期表中多数元素都至少有一个(如Co)、两个(如Sm)甚至三个(如Sn)同位素不受同量异位素干扰。只有In例外,它的一个同位素115In与115Sn重叠,而另一个同位素113In又与113Cd重叠。一般而言,具有奇数质量的同位素不受质谱重叠干扰,而具有偶数质量的许多同位素则会受到质谱重叠干扰。在m/z=36以下,不存在同量异位素干扰。有一些元素的丰度最高的同位素,亦即最灵敏的同位素可能受同量异位素干扰,如48Ti(丰度为73.7%)受48Ca的干扰。这类干扰的严重性在一定程度上取决于样品基体和有关元素的相对含量。
同量异位素重叠干扰除了来自样品基体或溶样酸中的元素外,还有一些来自等离子体用的氩气以及液氩中的杂质,如氪、氙等。
因为同质量重叠可以从丰度表上精确预计,此干扰的校正可以使用适当的计算机软件进行,现在许多仪器已能自动进行这种校正。
(2)多原子离子干扰
多原子离子(或加合物)是
ICP-MS中干扰的主要来源。这些离子,正如其名称所示,是由两个或更多的原子结合而成的短寿命的复合离子,如ArO 。
一般而言,最严重的多原子离子干扰是C、H、O、N、S、Cl的最高丰度同位素与Ar形成的多原子离子。它们有两组:以氧为基础质量较轻的一组和以氩为基础较重的一组,两组都包括含氢的分子离子。如干扰32S 。
许多多原子离子干扰是由形成的含O和H的多原子离子直接引起的。O和H由溶液中的水蒸气解离产生,其浓度很高。若设法减少进入等离子体中的水蒸气的量,那么这些离子的干扰将会大大减少。采用恒温雾室很容易予以实现。
(3)氧化物离子干扰
氧化物离子的产生源于样品基体不完全解离或是由于在等离子体尾焰中解离元素再结合而产生的。无论产生的原因是什么,其结果都是在M 峰后M加上质量单位为16的倍数处出现干扰峰,如16(MO)、32( )或48()。一般而言,可能出现的氧化物离子的相对强度能从所涉及的元素的单氧化物键强度上加以预测。具有最高氧化物键强度的那些元素通常都有最高的MO 离子产率,如Ce。氧化物离子的产率通常是以其强度对相应元素峰强度的比值,即MO /M ,大多数元素的这个比值都很少超过1.5%。
氧化物对分析能造成正的或负的干扰。正的干扰是氧化物和被分析物发生质谱重叠所致,类似于同量异位素的干扰。这种干扰可以通过加大分辨率分离干扰谱,或通过减少形成氧化物的量至对分析无关紧要的程度来克服。氧化物的量可以通过仪器操作条件的最佳化减少。而负的干扰是由于被分析物同位素有一部分形成了氧化物,结果造成了被分析的离子流的减小。负的干扰可以通过标定过程得到补偿,这需要标定的标准与样品成分基本匹配。
氧化物的形成与许多实验条件有关,例如进样流速、射频能量、取样锥与分离锥间距、取样孔大小、等离子气体成分、氧和溶剂的去除效率等。调节这些条件可以解决一些特定的氧化物重叠问题。
(4)双电荷离子干扰
只有二次电离能低于氩的一次电离能(16eV)的元素才形成明显的双电荷离子,主要为碱土金属、一些过渡金属和稀土元素。在正常操作情况下,双电荷离子产率非常少(﹤1%)。双电荷离子的形成能给元素分析造成负的干扰,这是因为每形成一个双电荷离子就会使该同位素单电荷离子减少一个。另外,双电荷离子也能对某些元素分析产生正的干扰,因质谱仪按质荷比(m/z)关系输送离子,所以双电荷离子会按单电荷时m/z值的一半出现在质谱中,如果它和被分析物另一个元素离子的m/z值相等,那么就产生了同量异位素的正干扰。