主题:【分享】暖通空调制冷行业专业常用现行标准规范目录

浏览0 回复70 电梯直达
可能感兴趣
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第二节 制冷剂与制冷循环
  第6.2.2、6.2.9制冷剂、载冷剂
   制冷剂采用的英文对照词为refrigerant或primary refrgerant,多数辞书上取前者。载冷剂的英文对照词,本术语中采用secondary refrigerant;refrigerating medium。两者同是制冷系统中实现制冷目的的工质,不同点在于制冷剂通过制冷循环实现制冷,因此一定伴随相变及潜热变化;载冷剂则是用在间接制冷系统中,并通过显热的变化实现制冷的,例如冷水机组中的冷水就是载冷剂。
   需要说明的是,尽管制冷剂、载冷剂在性能上有许多不同要求,但根本一点是在制冷系统中所起的作用不同。以水为例,既可以作为压缩式冷水机组中的载冷剂(chilled water),又可作为吸收式制冷机中的制冷剂(water as refrigerant)。水不能作为压缩式制冷机制冷剂的原因是由于水的单位容积制冷量小,会使压缩机体积太大。但在吸收式制冷机中是通过吸收等过程实现升压目的,因此可以用作制冷剂。因此,术语释义中用在制冷系统所起作用来区分制冷剂与载冷剂是合适的。
  第6.2.20条 制冷循环
   制冷循环是热循环的一种,热力循环包括制冷循环和热机循环。
   理想制冷循环为逆卡诺循环,由两个等温过程及两个绝热过程组成。实际制冷循环由于制冷剂同外界热交换是在有温差条件下,并且运行中存在各种能量损失,因此远小于逆卡诺循环制冷系数。工程上往往以逆卡诺循环作为标准,尽量减少运行中各种能量损失,以提高制冷机效率。
  第6.2.21、6.2.30 条 压缩式制冷循环、吸收式制冷循环
   压缩式制冷循环与吸收式制冷循环尽管实现制冷循环采用的动力不同,但确有如图6.2.21、30所示的相似之处。从图中可以看出,压缩式与吸收式制冷循环的冷凝、蒸发及节流过程是相似的,只是升压过程不同。前者采用压缩机,后者则是通过吸收、用泵升压及蒸气发生3个过程来完成制冷剂的升压过程,即通过热解来完成升压过程实现制冷目的。根本不同在于这一点。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第三节 制冷方式与制冷系统
  第6.3.4~6.3.5条 直接制冷系统、间接制冷系统
   制冷系统包括直接制冷系统和间接制冷系统两大类,根本不同在于直接制冷系统只包括制冷剂回路;间接制冷系统中包括制冷剂及载冷剂两个回路。例如,冷水机组属于间接制冷系统。
  第6.3.8条 一、二次泵冷水系统
   一、二次泵冷水系统是采用集中冷源的一种典型方式,典型图式如图6.3.8所示。
   特点是在二次环路中设置多台并联水泵或并联变流量水泵,当负荷变化时,可通过改变水泵台数或转速调节负荷侧二次环路中的循环水量以节约冷水输配中的电耗。在一次侧设旁通管,可通过压差控制等方式,实现制冷机中冷水环路水力工况的稳定,以确保制冷机的安全运行。它可以适应负荷侧变水量运行或压力不等的多环路用户的水系统的运行等,也叫初、次级冷水系统,采用的英文对照词也有用primary/secondary pumpchill water system的。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第四节 制冷设备及附件
  制冷机采用的英文对照词为refrigerating machine,这一术语在有关文献及辞书上多见,如《英汉工程技术词汇》、《冷冻空调用语事典》(日)、《新国际制冷辞典》和《制冷工程技术辞典》等。基本涵义是实现制冷目的的各部分组合的总称。它区别于常讲的制冷主机,制冷主机特指制冷压缩机(refrigerating compressor)。制冷机是一等同于制冷系统(refrigerating system)的概念。在美国ASHRAE等有关文献中,多采用refrigerating system这一类术语。经比较,制冷系统同制冷机概念是等同的。有的辞书中释义制冷机有成套的涵义,而制冷系统也有成套的涵义,并不能准确说明两者的区别。国内工程上也常用制冷机这一术语,例如暖通专业有关手册中将制冷机组(refrigerating unit)也并入制冷机,可见制冷机是一个大概念。制冷机组、冷水机组等则是制冷机的一种,例如离心式冷水机组、活塞式冷水机组等都包括在制冷机内。结合国内习惯,本标准同时收录了制冷机和制冷系统(第6.3.3条)这两条术语。
  第6.4.9、6.4.19条 冷凝器、蒸发器
  对于完成制冷机制冷循环的这两大主要换热设备,国内外工程界的叫法是一致的。冷凝器用在制冷机高压侧,是将制冷剂热量通过冷却介质(例如冷却水)带出的散热式换热器。蒸发器用在制冷机的低压侧,完成制冷目的。可分为直接冷却式(直接冷却空气或冻结物)及间接冷却式(制冷剂首选项冷却载冷剂,再通过载冷剂实现冷却目的),因此蒸发器是吸热换热器。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第6.4.35条 溴化锂吸收式制冷机
   溴化锂吸收式制冷机,在有些文献中也称溴化锂吸收式制冷装置absorption refrigerating plant(installation)。它是单效(又称单级)、双效(又称双级)及直燃式溴化锂吸收式制冷机的统称。这是由于完成制冷循环的工作原理是相同的,不同点在于单效采用一个发生器,双效采用两个发生器,因此可以利用较高压力(例如0.6~1MPa)的蒸汽,具有减少冷凝器的负荷等优点。直然式同一般的溴化锂吸收式制冷机相比只是热源取自燃气、燃油等。
  第6.4.43条 热泵
  热泵与制冷机具有相同的工作原理,即采用热机循环的逆循环(制冷循环)来实现其功能的,但用途不同。制冷机是从较低温度的介质或环境吸热,实现制冷目的;热泵则是从较低温度介质或不境吸热,并将热量传给较高温度介质或环境,实现供热目的,或做成同时实现制冷制热目的的两用热泵。根据热力学第二定律,热不能自发地不付代价地从较低温度的介质或环境传向较高温度介质或或必须采用高位能作为补偿条件,介由于消耗的仅是高位能的一部分,并且吸取低品位的热能又往往是空气、水、土壤及其他各种废热,因此热泵具有节能意义。目前使用的热泵有机械压缩式热泵、吸收式热泵、蒸汽喷射式热泵及热电热泵等。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第七章 自动控制
  第一节 一般术语
  第7.1.1条 自动控制
  本条给出的定义是广义的。自动控制的涵义既可以是最简的开和关,也可以是复杂的计算机控制的自动控制的实质,就是利用控制装置模仿人或代替人去对设备、系统或生产过程等进行各种操作的过程。在空调中经常采用的自动调节也是自动控制的一种形式,但它是具有被调参数负反馈的闭环系统,与自动测量、自动操作和自动信号报警等开环系统有本质的区别。控制系统的应用目的是多种多样的,因此,在自动控制的分类上有多种方法:可以按被调参数如温度、温度和流量等分类,也可按调节规律等分类或按给定值的形式分类,每一种分类方法都只反应了自动控制系统的某一个特点。
  第7.1.11条 调节对象时间常数
  本术语的定义是特指一阶调节对象而言的。调节对象通常分为简单对象和复杂对象,简单的对象是指只有一个被调参数,而且对象内部被调参数的取值是一致的,若不考虑传递滞后的影响,当出现扰动时,被调参数立即发生变化。严格说来,空调对象是有纯滞后的颁布参数对象。在工程计算中,为使问题简化,一般不考虑调节对象的纯滞后并把空调对象按集中参数处理,多数空调对象一般可以一阶线性常系数非齐次方程近似描述,一阶调节对象的时间常数是表示扰动后被调参数完成其变化过程所需时间的一个参数,即表示对象惯性的一个参数。时间常数的数值可用实验方法求得。调节对象的时间常数还可用"调节对象受到阶跃干扰后,被调参数从扰动零值变化到其总变化量的63.2%所需的时间"表达。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第7.1.12条 调节对象滞后
  在自动控制专业中滞后也称延迟或时延,在空调专业中多习惯称为滞后,这与自控专业术语命名仍是一致的,只是在空调专业中把本条术语命名统一了。调节对象的滞后有传递滞后和容量滞后两种。传递滞后是由于调节机构的位置距被调参数所在的容积有一段距离,能量的传输需要一定的时间而产生的。被调参数开始变化的时刻落后于扰动出现的时刻,这个落后的时间称为传递滞后,也称纯滞后。除传递滞后外,由于调节对象存在一个前置容积,如空调房间的围护结构,从传热机理看围护结构即是一个容积,如空调房间的围护结构,从传热机理看围护结构即是一个容积,室内是另一个容积。当一个扰动出现后,由于这个前置容积首先要吸收(或放出)能量来改变自身状态,然后才能使被调参数逐渐变化,这样被调参数开始变化后的时刻就会落后于干扰量出现的时刻,这种滞后是由于对象具有前置容积造成的惯性而产生的,故称为容量滞后。调节对象的总滞后是上述二者之和。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第7.1.23条 无定位调节
  无定位调节的执行机构是一个转速恒定的电动机,当被调参数与给定值无偏差或偏差小于允许范围时电动机不转动,当被调参数超过给定值上(下)限时电路接通,电动机以恒定速度转动带动调节机构动作,改变输出量,只要调节参数尚未回到给定允许的区域之内,执行机构就一直以恒速转动,直至偏差消除为止;而只要偏差一回到给定的允许范围之内,电动机就停止转动。这种调节不像双位调节执行机构只有两个极限位置,也不像比例调节那样调节机构的位移与偏差成比例的关系,而是有可能停留在任一位置上,故在空调专业术语中常称为恒速调节。
  第7.1.24条 比例调节
  本术语的命名与内涵一致,且约定俗成。定义中的输入量特指被调参数与给定值的偏差。比例调节在应用中除了位置比例即在调节过程中阀门的位移与被调参数的偏差成比例外,还有一种时间比例动作。所谓时间比例动作,系指其执行机构是开或关的双位动作,根据偏差的大小而改变在一个周期中开和关的比值,调节和供给调节对象的能量。由于调节机构的位置是与被调参数的一个数值相对应,当调节对象的负荷发生变化以后,调节机构必须移动到某一个与负荷相适应的位置才能使调节对象再度平衡,这就要求被调参数必须有一定的改变。因此,调节结果被调参数必须有所变化,就是说,调节结束被调参数有静态偏差。
赞贴
0
收藏
0
拍砖
0
2010/6/15 16:22:52 Last edit by wyqql2060
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第7.1.25条 比例积分调节
  比例调节结果存在有静态偏差,要想避免静态偏差,就必须加入另一种调节动作,譬如,被调参数念头愈大,调节机构朝着消除偏差的方向动作愈快,这就是积分动作。其数学表达式为:
  上式表明,调节机构的位移变化△u,不是和被调参数的偏差△e成正比,而是和偏差时间的积分成正比。
  比例积分调节,就是把比例动作和积分动作结合起来的一种调节。在调节过程中,比例调节是主要的调节,积分调节则是用来消除静态偏差的一种辅助调节动作。
  第7.1.26条 比例积分微分调节
  一般调节对象都存在一定的滞后,即当调节机构动作之后并不能立即引起被调参数的改变,特别是温度调节这种现象更为明显,只有提前采取措施,才能控制偏差的扩大,微分调节主要就是起这个作用。比例调节和积分调节都是根据被调参数与给定值的偏差进行动作的,而微分调节则是根据偏差变化的趋势(即变化速度de/dt)进行动作的。微分动作规律可用下式来表示。
  纯微分动作是不能单独使用的。因为纯微分动作的输出仅与输入量的变化速度成正比,所以不论偏差本身数值有多大,只在它的变化速度没有变化,就根本没有输出。如果系统中流入量与流出量之间只有很小的偏差,则被调参数的导数总是保持小于调节器不灵敏的数值,也就不能引起调节器的动作,但这样很小的不平衡却会使被调参数偏差逐渐增大,时间长了,偏差将会超过允许的范围,所以微分调节总是与其他调节动作一起使用,把比例积调节加上微分作用就可构成比例积分微分调节。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第7.1.38条 阀权度
  关于阀权度的定义及英文对照词在国内是统一的,只是中文命名在国内不一致,曾分别称过阀门能力、阀门权力、S值和阀权度等。经过对中文命名的比较,认为阀权度一词无论在中文的内涵上和与英文译名的对照上都显得较为合理。阀权度中文的内涵可包含两层意思:第一层意思如定义所述,说明阀门的压力损失占阀门所在调节支路总压力损失的百分比;第二层意思还有阀门的调节能力所能达到的程度。实际上当阀权度减小时,不仅工作流量特性对理想流量特性的偏离愈来愈大,而且调节阀的可调比也愈来愈小。因此,本标准把中文命名统一到阀权度。
青林
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第二节 控制方式与系统
  第7.2.6、7.2.11条 分程控制、选择控制系统
  分程控制和选择控制在空调系统中是较常用的控制方案,术语命名也是统一的,多用在冷水表面式冷却器系统温湿度双参数调节中。当室内同时有温湿度要求时,冷水表面式冷却器究竟是由温度调节器控制还是由湿度调节器控制,就有一个识别或选择问题。冷水表面式冷却器的选择控制就是根据室内温湿度的超差情况,将温湿度调节器输出的信号分别输入到信号选择器内部进行比较,选择器将根据比较后的高值信号自动控制调节阀改变进入冷水表面式冷却器的水量。采用选择控制时往往与分程控制结合起来使用,因为高值选择器在以最不利的参数为基准进行调节的,对相对湿度来讲必然是调节过量,即相对湿度一定比给定值小;如果冷水量是以相对湿度进行调节的,则温度就会出现比给定值低,如要保证温湿度参数都满足要求则应对加热器和加湿器进行分程控制。所谓对加热器和加湿器的分程控制,以电动温湿度调节器为例,就是将其输出信号分为 0~5mA和6~10mA两段,当采用高值选择时,其中6~10mA的信号控制冷水表面式冷却器的冷水量,而0~5mA一段信号控制加热器或加湿器的阀门。也就是说用一个调节器通过对两个执行机构的零位调整进行分段控制,即温度调节器既可以控制冷水表面式冷却器的阀门也可以控制加湿器的阀门。在这里选择控制和分程控制是同时进行的,也是互为补充的。此外,分程控制还可以用在多工况空调的工况转换上。
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴