主题:【求助】代人求助:神经细胞培养中种植培养液和饲养培养液的配制方法

浏览0 回复7 电梯直达
〓疯子哥〓
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
悬赏金额:10积分 状态: 已解决
神经细胞培养中种植培养液和饲养培养液的配制方法?

欢迎哪位大侠分享下经验
推荐答案:titi回复于2010/07/27
这是一个范围很宽的问题啊~~
首先不知道楼主是什么细胞啊?具体的生长情况如何啊??
在这里只能给您一些资料作为参考,期待楼主能够将详细情况说明,进一步讨论啊~~~

补充答案:

省部重点实验室回复于2012/10/25

(二)星形胶质细胞

星形胶质细胞是胶质细胞中体积最大,数量最多的一种,胞体呈星形,核大,呈卵圆形,染色质稀少,星形胶质细胞分两类,一类为原浆性星形胶质细胞(protoplasmic astrocyte),其突起短粗,分枝多。另一种为纤维性星形胶质细胞(fibrous astrocyte),它的突起细长,分枝少。纤维性星形胶质细胞是与少突胶质细胞源自同一前体细胞。星形胶质细胞具有多种功能,中枢神经系统内神经元及其突起间的空隙几乎全部由星形胶质细胞充填,起结构的支持作用,星形胶质细胞的突起构成血脑屏障,星形胶质细胞能摄取和代谢某些神经递质如γ-氨基丁酸等。调节局部神经递质的浓度,使神经网络能平稳地发挥作用。还能吸收细胞间隙中过多的K+,为K+的存储库,通过调节K+的水平而影响神经元的电生理活动。星形胶质细胞能合成和分泌大量神经营养因子,有维持神经元生存和促进神经元突起生长的作用,亦能分泌白细胞介素,肿瘤坏死因子和干扰素等多种细胞因子,星形胶质细胞有分裂能力,在中枢神经系统损伤后,星形胶质细胞增生、肥大,填补缺损,形成胶质瘢痕。

(1)方法和结果

选择出生 2 d 的SD大鼠,无菌条件下分离出大脑皮层,用0.125%胰蛋白酶消化(37℃ 30min)后用培养液( 90% DMEM,10 % 胎牛血清,2mM谷氨酰胺)吹打分散成细胞悬液,先接种于玻璃培养瓶中,于培养箱中孵育30 min后,翻转瓶子吸出细胞悬液,除去已贴壁的成纤维细胞,再接种于涂有鼠尾胶的75cm2塑料培养瓶中, 种植密度为1×105 个细胞/cm2,每瓶10ml细胞悬液置。置36℃、10%CO2 培养箱中培养。每周换液2 次,培养10-14h,细胞分为两层,下一层为I型胶质细胞即原浆形胶质细胞,上一层是O-2A前体细胞,根据两类细胞贴壁能力的差异,以振荡培养技术进行分选,在37℃摇床上振荡,16 h(180r/min)O-2A前体细胞可被摇下来,摇下来的细胞种植在涂有鼠尾胶的75mcm2塑料培养瓶中,培养液使用20 % 胎牛血清促进O-2A前体细胞分化为II型胶质细胞即纤维型胶质细胞。可分裂增殖的原浆形胶质细胞和纤维型胶质细胞可用于进一步传代培养,也可进行冷冻保存备用。纯度鉴定可用胶质纤维酸性蛋白抗体(GFAP)染色确定。

(三)少突胶质细胞

1、方法和结果

少突胶质细胞培养方法同星形胶质细胞培养。少突胶质细胞比星形胶质细胞小,光镜下少突胶质细胞胞体呈圆形或多角形,突起呈串珠状,根据其所在部位的不同可分为束间少突胶质细胞、神经元周围少突胶质细胞。在中枢神经系统内,少突胶质细胞主要形成及维持髓鞘。

讨论

在神经生理、生化和神经药理的研究中、神经细胞的体外培养日益受到重视,因为它是研究单个神经细胞功能和结构的适宜方法。

在体外培养条件下背根神经节、颈上交感节、胚胎脊髓和不同脑区 (海马、隔、下丘脑、大脑皮层、小脑和垂体细胞等)培养细胞的形态特征都不尽相同,这与它们具有不同功能有关。交感和感觉神经元以及不同脑区神经元的体外培养成功,为我们深入研究它们的结构和功能提供了合适的体外实验模型。

在背根节神经细胞培养过程中,我们观察到,早期感觉神经元发育阶段,NGF是必不可少的营养因子,但在培养后期,神经元已发育成熟,可能非神经细胞分泌的极少量NGF即能满足神经元生长需要,因此不另NGF也能维持长期培养。在上颈交感节细胞分散培养过程中, 我们亦观察到,若最初1-2d在培养液中缺乏 NGF,交感神经元突起不见生长,且大多死亡。培养15d或1个月时,如果培养液中未加入NGF,本来生长良好的神经元很快便出现颗粒变性或空泡,逐渐死亡。结果表明NGF对于促进神经突起生长和维持神经元生存有显著作用。

在神经细胞培养过程中,神经细胞的生长发育受到多种因素的影响,其中细胞接种密度对细胞生长发育影响较大,一般神经细胞的接种密度以0.5-1×106 个细胞/ml密度为宜,如每毫升中超过3×106个细胞/ml密度,将使细胞簇过大,而且培养皿内过分拥挤,影响存活和生长。但如果培养的细胞数目过少时,神经细胞的生长分化较差,因为神经细胞是一种细胞群体,它们相互之间具有营养和支持作用。其次是控制非神经元细胞过多增殖。

原代分散单层培养是神经细胞与非神经细胞的混合培养。其中胶质细胞等可在体外继续增殖,神经元则不能增殖而只能生长分化。当适量胶质细胞的存在是神经细胞长期培养的必要条件,但如果神经胶质细胞过渡增殖时,神经细胞的生长分化便受到一定影响,常使神经细胞提早开始退化。这可能是由神经胶质细胞频繁分裂过程中,夺取了神经细胞生长中需要的某种营养成份。为保证神经元生长所需的营养,需在非神经细胞增殖的高峰即所谓“合流”(confluence)时,将一定量的抗DNA 药物加入培养液中以抑制其过渡增殖,实验证明,在培养第5d 或第7d时使用 5-氟-2'-脱氧尿苷15μg/ml和尿苷35μg/ml或阿糖胞苷3μg/ml,作用48h即停用可加快神经元的分化,延长培养时间。

再次是所配制的培养液必须保持一定的等渗性,溶解于培养基的物质浓度所产生的等渗性必须与细胞外液的液体一致,培养神经细胞可将培养液的渗透压调节到320-330 mOso 较为合适。如果培养液是高渗的,细胞会失去水份并发生皱缩,如果培养液是低渗的,细胞会吸收水分而膨胀。两者不利于神经细胞的存活和生长。

最后需注意的是须掌握换液的次数和数量。为了使神经细胞得到生长分化必须的营养,必须经常进行换液,但如果换液次数太多,并不利于神经细胞的生长分化,因为神经细胞在培养液中需要适当的环境,而且它本身也有创造良好环境的能力,如果频繁换液就会破环这种环境。我们每周换液二次,每次只换一半,保留一半原液。除此之外,培养液的PH、温度等均对神经元的生长发育有影响,因而在实验中必须加以注意。

为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
titi
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
这是一个范围很宽的问题啊~~
首先不知道楼主是什么细胞啊?具体的生长情况如何啊??
在这里只能给您一些资料作为参考,期待楼主能够将详细情况说明,进一步讨论啊~~~

titi
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
培养细胞的完全培养基由基础培养基(如MEM)和添加剂(如血清或无血清培养用的某些确定的激素及生长因子)组成,培养基的配方一直在改进,其中包括抗生素和抗有丝分裂剂等等。

基础培养基

绝大多数培养基是建立在平衡盐溶液(BSS)基础上,添加了氨基酸、维生素和其它与血清中浓度相似的营养物质。最广泛应用的培养基是Eearle`s MEM 的混合物,其中含有13种必须氨基酸、8种维生素。而Ham`s F12 也包括非必须氨基酸,维生素的范围亦很广,另外常规含有无机盐和代谢添加剂(例如核苷酸)。MEM/F12 这两种培养基各取1/2,形成神经生物学最通用的培养基。Dulbecco`s改良培养基——DMEM,现应用于快速生长的细胞,同MEM含有相同的营养成分,但浓度高出2~4倍。选择某种培养基,应仔细了解成分表,应知道大多数情形下培养基都有不足。例如,有些培养基在氨基酸中包括有谷氨酸,而这种培养基虽广泛用于神经生物学领域,但它对某些对谷氨酸敏感的可能有细胞外毒性损伤的神经元而言,则并非最佳选择,特别是如果神经元生长在缺乏胶质的环境中时。F12中含有硫酸亚铁,据报道也有神经毒效应。

在所有这些培养基中,谷氨酸比其他氨基酸有更高的浓度,这是因为它具有不稳定性以及在许多细胞培养中它常用作碳源。对于神经元的培养常常在基础培养基中增加葡萄糖的含量到0.6%或者加入丙酮酸(若培养基中这两种物质缺乏时)。MEM与F12均要用5%的CO2来平衡,DMEM含更高浓度的NaCO3,要用10%的CO2来平衡,当然也可以在较低CO2浓度下使用。这些基础培养基的组成成分是建立在对不同细胞系生长的研究之上的,但通常在原代培养中使用也能有比较令人满意的结果。

原则上,HEPES作为缓冲剂可用来代替碳酸氢盐,以解除需要高浓度CO2培养环境的限制。实际操作中并非如此简单。显然,溶解的CO2与碳酸氢盐对良好的细胞生长是重要的。Leiboviz`s L15培养基可用来在大气环境中令神经细胞生长,该培养基采用了与众不同的BSS作基础,它含有高浓度的氨基酸来提高缓冲能力,培养基中使用半乳糖作碳源,以阻止培养基中乳酸形成,少量溶解的CO2由丙酮酸代谢产生。这一培养基的优点是明显的,特别是在保持较高CO2有困难时,例如在长时间的显微操作及生理学研究中。L15培养基已用来成功的培养了外周神经元,但尚未在CNS神经元的发育研究中全面检测过。

血清

细胞在单纯的基础培养基中不能存活,在特殊类型的细胞培养中必须提供某些痕量营养物质及生长因子才能使细胞得以生长并维持生长状态。基础培养基常常要添加血清,血清终浓度多为5~20%。特殊用途的血清来源须用经验确定,广泛应用的血清种类有马血清与胎牛血清。胎牛血清中富含有丝分裂因子,常选其作增殖细胞用的血清,也用于细胞系和原代培养。而马血清常常用来作有丝分裂后的神经元培养。然而,很多人也将胎牛血清用于神经元培养,也有人用马血清来培养胶质细胞。用大鼠进行神经元培养的某些研究者喜欢使用同型血清;人类的胎盘血清,亦曾用于神经组织的器官类型的培养,也用在一些特殊培养种类中。
血清的不同批号含有不同的成分,所以许多人发现,应该在使用前对血清进行测试。大多数试剂商提供样品,所满意的批号即可选用,这样可以一次得到足够一年用量的血清,血清在使用前通常在56℃加热30分钟,这一过程称为灭活。

无血清培养基

1979年神经细胞培养出现了一个重要进展,用化学添加剂即可维持神经细胞存活与生长而不需要在培养基中添加血清。其工作基础是用合适的激素、营养物和促贴壁的物质的组合置换培养基中的成分,最后找到了适合大多数细胞培养的试剂配方,该配方称为N2,最早是用在B104大鼠神经母细胞瘤细胞系的培养。它的基础培养基是1:1的DMEM与H12的混合液,添加了胰岛素、转铁蛋白、黄体酮、腐胺和硒。胰岛素和胰岛素样生长因子对于大多数类型细胞的存活和生长有重要作用,硒是谷胱甘肽产生的合作因子,可能有助于过氧化物和超氧化物的水解,有报道说还能防止细胞的光照损伤。随后的其他配方如N1N3则含有较低浓度的转铁蛋白。
未料到的是上述配方构成的培养基可以支持神经母细胞瘤细胞系快速增殖,随后又发展了能支持原代培养的各种神经元生长的培养基,这种培养基在许多实验室里已取代了有血清培养。在某些培养方案中,细胞直接进入无血清培养,这样的培养基可以消除来自血清的不均一性。更为重要的是,它们可用来检测生长因子以及其他促进神经元存活或生长的因子,或者用来检测那些可保护神经元免遭环境毒物损伤的制剂。专用于神经元的培养基在某些培养环境中还可以减低非神经元细胞的增殖,故可使神经元纯化。
血清中含有的组分,例如血清蛋白,可作为代谢毒物清除剂使用并能聚集于培养基中。当缺乏这些成分时,如神经元在无血清培养基中生长时,特别容易为过氧化物及自由基伤害,这已被许多研究者注意到了。过氧化物酶以及超氧化物歧化酶可阻止培养基中过氧化物和超氧化物的累积,有报道讲可以促进低密度培养细胞的存活。有学者发现细胞存活可为氧分压的下降而促进。因而,无血清培养基的配方常含有抗氧化剂的试剂。例如,维生素E和丙酮酸,可作为过氧化物清除剂使用。上述这些影响在高密度培养时变小,特别是神经元与胶质共培养时,它们可以吸收和代谢神经元毒性物质如谷氨酸。
应该注意,尽管无血清培养基是有化学限定性的,但在培养过程中它仍有变动,培养起始时可能有些物质缺乏,而后细胞的产物可能积累,从而使培养基的成分改变。这其实是有另一方面的好处,即条件培养基(已培养过细胞的培养基)的形成,条件培养基常常用来增加神经元和胶质细胞的发育。
生长因子绝大多数哺乳类胚胎神经元有严格的营养要求,若不能提供适宜的生长因子或合适的因子组分,将会使绝大多数神经元在体外培养的数天中死亡。解决这一问题有两条思路,一是让培养细胞提供自己的营养因子,二是在培养基中加入纯的生长因子。如果细胞混合物能在高密度时生长,所需的生长因子便会积累到可观的数值,尤其当培养基很少变化时。若某种细胞混合物生长时有很少的营养需求,可保持培养基在一段时间里不作任何变动,以使营养(生长)因子积累,而最后促使所需要的细胞类型能够生长。但是,这种对营养(生长)因子自身倚赖性亦有弊端,因为通常在混合细胞群体中细胞很难有同比例增殖,某些细胞会因生长条件的贫乏而受限制。另外,这种方法只能进行相当高密度的细胞培养。因为培养基的条件在细胞的较低密度时变的不够有效。不过某些时候纯化神经元群体的低密度培养可用条件培养基(经过了高密度培养)进行,或在胶质上生长的神经元所用过的培养基来支持。
该帖子作者被版主 bigbearbigbear5积分, 2经验,加分理由:感谢回答
titi
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
满足神经元营养需求的第二条途径是向培养基中加入生长因子。通常用于组培的通用适宜因子是神经生长因子NGF。不过,只有少数对这种蛋白质有反应的细胞类型的细胞才能生长。
许多PNS类型的神经元在离体状态时表现出简单的营养需求,只需提供单一的营养因子就足以使其在低密度时增殖。例如,大鼠交感神经元仅需NGF即能存活,在其生存期间,这些神经元可在严格局限条件下生长好几个月(即在无血清培养基中、或缺乏胶质细胞、或在化学限定基质上)。有证据表明NGF是活体中交感神经元存活的生理调节因子。然而,交感神经元也对来自胶质细胞的神经营养因子(GDNF)有反应,还有NT3、LIF与CNTF也对其有作用。在不产生GDNF或NT3的动物中,交感神经元会有损伤。在离体与活体营养需求之间的差别或许可以用在不同环境中NGF含量和分布的不同来解释,培养中的NGF弥散在整个环境中,而在活体内,大部分区域的含量是有限的。因此,NGF的重要性在于其合适的浓度。尽管在大多数实验中已经习惯了营养因子的最大效应使用量,其他营养因子的协同效应在亚优剂量下更容易观察到。此外,高浓度的营养因子可使细胞更能抵抗毒剂以及其他压力。相应的,低浓度的营养因子可能用来检查表现型,例如对自由基或氨基酸的毒性刺激剂量的反应。有许多其他的PNS培养系统只需单一营养因子就可使有实用价值的细胞保持在一定比例,广为人知的有雏鸡睫状自主神经节神经元和大鼠背根神经节感觉神经元。不过,这些模型也有局限性。例如,培养中的睫状神经节的神经元加入CNTF时,超过90%的神经元能存活一个很长时期,但并未有迹象表明它属于内源的靶细胞来源的营养因子,而是有争论的相关分子,GPA,扮演了这一角色。大鼠背根神经节含有好几种细胞群体,其中小细胞群、包括nocioceptive cell,对NGF有反应,但其他神经元,例如大细胞群中的proprioception 却对不同的神经营养因子有反应。因此,在大多条件下培养物的生长并不能忠实反映亲代群体的所有特性,这一问题在CNS中特别突出,因为已有的经验表明,没有一种培养基能适合于所有类型及亚类的神经细胞的生长。
现有的证据已表明,CNS神经元的营养需求比PNS的更复杂。对脊髓运动神经元与视网膜节细胞神经元的研究表明,这些神经元与外周神经元相比能对更为广泛的营养因子起反应。例如,至少发现了15种不同的分子可在离体条件下增加神经元的存活。而且,已观察到运动神经元与视网膜对任何单独的营养因子的存活反应,与PNS中所观察到的典型反应相比,都要小得多。因此,大多数影响运动神经元及视网膜节细胞的营养因子仅仅只能支持神经元的亚群,而神经元的最佳存活要求诸多因子的结合。在视网膜节细胞的培养中,因子的最佳组合(如BDNF、CNTF、IGF、bFGF)包括了来自不同生长因子家族的代表。这一结果的普遍性尚待进一步的证实,但敲除单一的营养因子基因之后,没有表现出对CNS大多类群的神经元的存活产生太大影响,这一观察与上述的事实是一致的。现已知少突胶质细胞的长期存活也需要众多营养因子的相互作用。

抗生素

最常用的抗生素是青霉素(常用浓度是25~100ui/ml)与链霉素(25~100μg/ml)。这两种抗生素常混合使用。在一些实验室里,它们常规加入所有的培养基中。庆大霉素(10~100μg/ml)通常有广谱抗菌效应,并具有溶液稳定性,故也被一些实验室使用,特别是当有低水平的污染存在时更是这样。以上这些试剂对霉菌与酵母菌的污染均无效。
尽管很多实验室在细胞系的培养基中常规加入抗生素作继代培养,但仍建议不要在原代培养中加入抗生素,其理由之一是获得的细胞是无菌的,原代培养时的细菌污染很少发生。其次,尽管认为抗生素对细胞代谢的影响可忽略,但最好避免使用它们,以免细胞生长环境的不稳定。最重要的是要意识到培养中主要污染物的类型,它们通常暗示了问题的来源。

抗有丝分裂剂

某些DNA合成抑制剂对分裂细胞有毒,但对没有DNA合成的细胞仅有轻微影响。由于神经元通常缺乏DNA合成能力,因此对抗有丝分裂剂没有多大反应。这样的试剂常常用于神经元的培养,以消除或减少非神经元群体。若要杀死所有的非神经元细胞,可以先加入血清或生长因子来保证有高比例的非神经元细胞进行DNA合成,此时再加入抗有丝分裂剂。但是,某些细胞在它的细胞周期的某些时相时对抗有丝分裂剂是不敏感的。不过,可以重复的将抗有丝分裂剂使用于增殖的细胞群体。在CNS神经元的培养中抗有丝分裂剂常常在星形细胞形成单层后加入,此时,星形细胞由于接触抑制而终止了DNA的合成(即细胞停止增殖),它们不会因抗有丝分裂剂的加入而死亡。原代培养中用这种方法阻止成纤维细胞的过度增殖是十分必要的。有两种抗有丝分裂剂常用于神经元的培养:Fluorodexyuridine,是胸苷合成酶抑制剂,一般使用浓度为~10μM。尿苷(10μM)也常使用,可阻止不分裂细胞的RNA合成。另外,阿糖胞苷也常被使用,其使用浓度为5~50μM。使用任何一种抗有丝分裂剂,都必须考虑它的神经原毒性,应该确定最低效应的使用浓度。阿糖胞苷在很低的浓度下,也会对某些种类的神经元有毒性,可以造成特定神经原的死亡。其他的抗有丝分裂剂尚未表现出这种毒性。

培养的保持

培养物是应该保持在孵箱中的。孵箱可以自动将O2与CO2混合很快达到培养基的设计要求,空气中的氧浓度比血液和脑脊液中要高得多。对于某些细胞的生长,包括神经原,应使氧含量处在一个较低的水平。可以用孵箱达到这个标准,但这样的孵箱并未广泛使用。
高湿度可避免培养皿中培养基的蒸发,保持孵箱中的湿度通常是在箱底部放上一大盆水,这水应该经常换,乘水容器应经常消毒以防霉菌生长。若孵箱曾被霉菌孢子严重污染过,那么要想完全去除污染则会非常困难。当培养物必须要长期保持在孵箱中时,应采用较少培养基的瓶、皿,且将盖子盖紧以避免蒸发,或采用相应的按比例供空气的孵箱。
温度的精确调节应定期检查,孵箱温度常设置为37℃或较低温度。细胞在低温时可有较长时间的忍耐限度,但当温度升至39℃时,几小时内即死亡。
维持培养物的最佳方案常常改变。例如培养胶质细胞时,要经常换液以使其增殖达到最大。而在培养某些神经原时,则要求尽可能少的换液,神经原在两次换液之间的条件下长的最好。大脑皮质的培养要求在不换液的情形下维持一个月以上。另一方面,象海马神经原那样的细胞,倚赖于条件培养基,若换液太频繁细胞就会衰退,此时,可采用1/3或1/2换液的方式。
titi
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
一. 设备: 无菌操作设备。
二. 大型设备CO2培养箱:恒温5%、10%CO2维持培养液中pH值。
倒置显微镜:用于每天观察贴壁细胞生长情况。
解剖显微镜,用于准确地取材。
常温冰箱:-4℃,用于保存各种培养液,解剖液和鼠尾胶。
低温冰箱:-20℃--80℃,用于储存血清酶,贵重物品和试剂。
电热干烤箱:用于消毒玻璃器皿。
高压消毒锅:用于消毒培养皿,手术器械。
过滤器:配制解剖液、培养液,必须过滤后才可使用,以去除细菌。
渗透压仪,pH剂,天平等。
三. 培养器皿及手术器械
1 培养皿:常用35mm塑料及玻璃皿,解剖取材用15mm-90mm直径。
2 培养板,24-40孔,可用于开放培养。
3 培养瓶:
4 吸管,常用1,5,10ml,均需泡酸、洗涤、灭菌后方可使用。

5 各类培养液贮存器。

6 小型手术器械。
准备:
一 配制培养液
(1) 解剖液:以无机盐(去除Ca2+ , Mg2+)加葡萄糖配制成PBS缓冲液,保持一定的渗透压和pH值。
(2) 基础培养基(MEM):主要为多种氨基酸,加入葡萄糖,双蒸馏水溶解。
(3) 接种培养液:用于胰酶消化后的细胞分散,做成细胞悬液,其成分为MEM含1%谷氨酰胺,另加入10%马血清,当天配制。
(4) 维持培养液:接种后24h,全部换成此液,后每2周换一次,每次换1/2。其成分为MEM中含5%马血清,1%谷氨酰胺,及适量的支持性营养物质。
二 培养基质 常用鼠尾胶、小牛皮胶,多聚赖氨酸,再涂胶
三消毒培养皿的备用。所有培养器皿均需清水冲洗2-3d,达两次ddH2O,每遍洗刷3-4次,加塞包装,置于烤箱中干燥消毒,于培养前1天进行。
神经细胞分散培养
(一)选材常用胚胎动物或新生鼠神经组织。鸡胚常用胚龄6-8d,新生鼠或胎鼠(12-14d)或人胚胎。不过也有认为与组织相关。如大白鼠胚胎以19d为宜,小鼠以18d为宜,大鼠纹状体以10d为宜;若纹状体与黑质联合培养的大鼠胚,则黑质以13d,纹状体18-21d为宜;小脑以20-21d小鼠胚胎,所获蒲氏细胞成活率高,颗粒细胞正在分化;脊髓与DRG联合培养,常用4-7d鸡胚或12-14d小鼠胚胎,取材易,神经成活率高。
(二) 取材。脑则取出相应组织,在解剖液中先剪碎,以使胰酶消化。脊髓则固定于琼脂板上,用小刀将其要成背腹两侧,分别培养。
(三) 细胞分离与接种。神经组织用0.125-0.25%胰蛋白酶在37℃孵育30min,移入接种液,停止消化,并洗去胰蛋白酶液,用细口吸管吹打细胞悬液,使其充分分散,如此多次,待沉淀后吸出上层细胞悬液,计数,预置细胞密度,接种于培养皿(1×106),做电生理应为5×105或更低。
(四) 抑制胶质细胞生长。培养3-5d后,也有人认为培养7d后,用阿糖胞苷,或5-FU抑制神经胶质细胞的生长。
(五)观察。接种6-12h,开始贴壁,并有集合现象,细胞生长突起明显,5-7d胶质细胞增生明显,7-10d胶质细胞成片于神经细胞下面,形成地毯,2周时神经细胞生长最丰满,四周晕光明显,一个月后,有些神经细胞开始退化,变形,甚至出现空泡,一般培养2-4周最宜。
但神经细胞只能增大,而不能增殖,只能原代,不能传代,不会有细胞周期,而且随培养时间的延长,细胞数量在下降,但胶质细胞可以,神经胶质细胞也可以。在培养过程中,早期9-12d 时,有较多的神经细胞死亡,这是第一次死亡阶段,应注意保持条件的恒定。在此之后存活下去的细胞一般突起长而多,且相互形成突触。
(六) 常用培养细胞实验有:FCM的蛋白总量分析;膜片钳与离子通道的分析;免疫组化分析;
但免疫组化分析应注意,由于抗体直接作用于活细胞,不易穿透活细胞,故对核内抗原定位时,首先考虑膜对抗体的通透性问题。常用化学试剂以增加其通透性或采用冰冻方法解决。
在免疫组化中,或其它组织学染色中,常用不同的染色方法以区分不同细胞,如半乳糖脑苷脂对小树突胶质细胞标记明显;GFAP对星形胶质细胞具有特异性染色等。这对研究神经系统中胶质细胞功能具有极大的应用价值。神经胶质细胞以往多被忽视,其在脑血管疾病(如缺血性损伤)、退行性疾病(如AD、PD)、损伤后胶质细胞的填充等具有不可忽视的作用。它也是神经细胞功能和营养支持的物质基础。
省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件,观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。 我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下:

一、鸡胚背根神经节组织块培养

主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。

1、材料和方法

(1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。

(2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。

(3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。

(4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧排列的背根节(图1),用一对5号微解剖镊小心取出。

(5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料培养瓶中,在DMEM无血清培养液中培养。

2、结果

鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。

二、新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养

背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数毫米,因此,利用培养的DRG细胞,进行轴突生长发育的研究,是最为经典而常用的方法之一。

1、材料和方法

取新生一天的大鼠(wistar种)和小鼠(昆明种)。用眼科剪在无菌条件下除去背部皮肤, 然后剪取一段脊髓,背侧朝上置于灭菌毛玻璃片上,在解剖显微镜下沿椎管两侧水平剪除腹侧一半椎骨,暴露脊髓和神经节,用解剖镊分离出神经节。鸡胚背根神经节的取材方法同前。 剥除神经节被膜, 用0.125%胰蛋白酶消化(37℃ 30min)分散后用种植(Plating)培养液稀释成0.2×105 个细胞/ml密度的细胞悬液,接种于涂有鼠尾胶的35mm塑料培养皿中,每皿2ml细胞悬液置。置标本于36℃、10%CO2 培养箱中培养。24h后倾去培养皿内种植培养液,改用饲养(Feeding)培养液培养。接种第3d, 在培养皿中分别加入细胞分裂抑制剂5-氟-2'-脱氧尿苷15μg/ml和尿苷35μg/ml以抑制非神经细胞的增殖, 作用48 h后更换新鲜饲养培养液,以后每周换液两次, 每次更换一半新鲜饲养培养液。 

2、培养液成份

种植培养液:80%Eagle's DMEM(含葡萄糖600mg/100ml、NaHCO3 3.7g/L);10%胎牛血清;10%马血清;NGF 20ng/ml;谷氨酰胺100μg/ml。脱氧核糖核酸酶 I 40μg/ml。

饲养培养液: 95%Eagle's DMEM(含葡萄糖600mg/100ml、NaHCO3  3.7g/L,);5 % 马血清;NGF 20ng/ml;神经营养素 1ml/100ml;谷氨酰胺100μg/ml。

3、新生大鼠背根节神经元的生长分化和形态特征

新生大鼠背根节神经元接种后4h,大部分细胞可贴壁,呈圆形或椭圆形,直径8-14μm, 胞体周围呈现一圈光晕。神经元的细胞核位于中央或偏于胞体一侧,核仁明显,亦可见双核神经元。接种后24h,大部分贴壁细胞开始长出突起。其中多数为具有多个突起的多极神经元,少数为双极和假单极神经元,突起细长,并可观察到突起末端的生长锥。除单个散布的神经元外,还常见到几个或多个神经元聚集在一起,它们向四周发出树枝状的神经突起。 培养2-3d后神经元的突起逐渐增多并延长,形成稀疏的神经网络。随着培养时间的延长,神经元突起的主干和分枝明显延长并增粗,神经突起网络变得更加稠密,神经元胞体逐渐增大。大鼠背根节神经元可维持培养2个月。

4、新生小鼠背根节神经元的生长分化和形态特征

新生小鼠背根节神经元的形态结构和生长分化基本上与新生大鼠相似,但小鼠背根节神经元的胞体较大鼠稍小。神经元亦随着培养时间的延长而逐渐增大。小鼠背根节神经元亦可维持培养2个月。

5、鸡胚背根节神经元的生长分化和形态特征

鸡胚背根节神经元的生长分化基本上亦与新生大鼠和小鼠相似。但鸡胚背根节神经元以假单极为多见。 与大鼠或小鼠背根节培养神经元相比,神经突起分枝较少。神经元胞体稍小,神经元亦随着培养时间的延长而逐渐增大。鸡胚背根节神经元亦可维持培养2个月。

三、新生小鼠颈上交感神经元分散细胞培养

交感神经系统在维持机体的正常功能和对环境的适应性反应中起着十分重要的作用。交感神经细胞培养特别有助于神经细胞发育和可塑性研究,利用体外培养系统可进行交感神经细胞的发生、死亡、形态和生化发育、递质表形的获得,以及靶组织与传入纤维的突触形成的研究。此外,通过体外培养系统可获得关于神经营养因子、激素,细胞因子等调节交感神经元发育的信息,了解传入纤维的输入以及与靶组织的联系的机制。

1、材料和方法 

实验用出生当天的昆明种小鼠,在无菌条件下腹部朝上固定于塑料泡沫板上,用微解剖镊在解剖显微镜下找到气管两侧的颈总动脉,并以此为标志,在颈总动脉分为颈内外动脉交叉处找到上颈交感节,  取出上颈交感节, 置于含 1 % 胶元酶(Collagenase)和1 % 消化酶(Dispase)的2ml混合消化液中消化(37℃, 1 h)分散后,用种植(Plating)培养液稀释成0.2×105个细胞/ml密度的的细胞悬液;接种于涂有小牛皮胶或以小鼠脑皮层胶质细胞为背景的35mm塑料培养皿中,每皿2ml细胞悬液置。置标本于36℃、10%CO2培养箱中培养。24h后倾去培养皿内种植培养液,改用饲养(Feeding)培养液培养。接种第3d, 在培养皿中分别加入细胞分裂抑制剂5-氟-2'-脱氧尿苷15μg/ml和尿苷35μg/ml, 作用48 h后更换新鲜饲养培养液,以后每周换液两次, 每次更换一半新鲜饲养培养液。 

2、培养液成份

种植培养液:80%Eagle's DMEM(含葡萄糖600mg/100ml、NaHCO3 3.7g/L);10%胎牛血清;10%马血清;NGF 20ng/ml;谷氨酰胺100μg/ml。脱氧核糖核酸酶 I 40μg/ml。

饲养培养液:95%Eagle's DMEM(含葡萄糖600mg/100ml、NaHCO3 3.7g/L,);5%马血清; NGF 20 ng/ml;神经营养素 1ml/100ml;谷氨酰胺100μg/ml。

3、新生小鼠交感节神经元的生长分化和形态特征

新生小鼠交感节神经元在含 NGF 的培养液中种植后4h, 细胞即开始贴附在胶元薄膜或在皮层胶质细胞层上生长, 交感神经元的胞体一般为圆形, 有时亦可见椭圆或梭形,体积较大, 直径约8-14μm左右,胞体周围呈现一圈光晕,神经元的细胞核大多偏于胞体一侧,核仁明显,亦可见双核神经元 。接种后24h, 大部分贴壁神经元开始长出突起。培养2-3天后,神经元突起逐渐增多并延长, 形成稀疏的网络。随着培养时间的延长, 神经突起网络变得更加稠密。神经细胞的主干和分枝明显延长并增粗, 神经元的胞体逐渐增大。小鼠交感神经元可维持培养1-2个月。

四、胚胎小鼠、大鼠、鸡胚脊髓腹角运动神经元培养

中枢神经系统包括脑和脊髓,脊髓是中枢的初级部分,其功能有二,一是传导感觉和运动冲动,二是完成躯体运动的基本反射。脊髓突然被横断并与高级中级失去联系后产生脊休克。因此,利用体外培养的脊髓腹角运动神经元进行脊髓损伤和修复的研究日益受到重视。

1、材料和方法

用12-14d 胚龄的小鼠、12-14d 胚龄的大鼠、 孵化10 d 的鸡胚,在无菌条件下取出胎鼠或鸡胚脊髓,剥除脊膜后,将整个脊髓腹侧面朝上置于平皿中,用微解剖镊和双面刀片沿脊髓中央管纵切两半,再将脊髓两侧的腹侧部分切下,将组织块切碎, 用0.125% 胰蛋白酶消化(37℃ 30min)分散后,用种植培养液(同第二节)稀释成5×105个细胞/ml密度的细胞悬液,接种于涂有小牛皮胶的35mm塑料培养皿中,每皿2ml,置36℃、10%CO2的培养箱中培养,24h后倾去培养皿内种植培养液, 改用饲养培养液(同第二节)进行培养。以后每周换液两次,每次更换50%的新鲜饲养培养液。

2、胚胎小鼠、大鼠、鸡胚脊髓腹角运动神经元的生长分化和形态特征

胚鼠和鸡胚脊髓腹侧神经元培养12h后,大部分神经元可贴壁,贴壁神经元呈圆形,直径5-8μm,其中少数神经元开始伸出1-2个突起。培养24h后,神经元突起逐渐增多并延长,形成稀疏的网络,培养的脊髓神经元以双极和多极为多见,神经元呈圆形或椭圆形及多边形不等,胞核清楚,多数具1-2个核仁。随着培养时间延长,神经元突起进一步增多、增粗并延长,形成稀疏的神经网络,神经元胞体逐渐增大。 多极胞体大的神经元逐渐增多,经胆碱乙酰转移酶(ChAT)免疫组织化学染色和乙酰胆碱酯酶(AChE)组化染色呈阳性反应。此后,只要定期换液并适当抑制非神经细胞的过度增殖,胚眙大鼠、胚盼小鼠和鸡胚脊髓腹侧运动神经元在体外可维持培养2个月。

五、新生大鼠海马神经元分散培养

海马属大脑边缘系统,与情绪、学习及记忆有关,它具有明显的长突触传递的长时间程长时程增强(LTP)和长时程抑制(LDT)的能力。LTP和LDP具有协动性、特异性、长时性的特点,目前已被认为是学习和记忆的基础。而且海马组织常常是引起癫痫发作的病变部位,并且海马细胞对缺血、缺氧特别敏感。这些特征反映了海马神经元的内在性。例如,对缺氧的可塑性和易感性均与NMDA(N-methyi-D-aspartate,N-甲基-D-天冬氨酸)受体的独特性质相关。海马具有中枢神经系统的典型特性,有相对同源性的神经元群体,据估计,海马主要的细胞类型---锥体神经元占海马全部神经元的85%-90%。海马CA1和CA2区含有的锥体细胞在电生理特性及其相互连接的形式上各不相同,并能分别进行培养。海马锥体细胞具有特征性的形态,它们有单根轴突和数根树突组成,所有的树突都高度分化并密布树突嵴。此外,海马锥体神经元相互之间与中间神经元群体之间均有直接联系,在体外培养系统缺乏外源性传入纤维的情况下,海马神经元相互间仍然能产生广泛的突触联系。

省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧海马,用0.125%胰蛋白酶消化(36℃、30min)分散后,用种植培养液(同第二节)稀释成5×105个细胞/ml密度的细胞液,接种于涂有小牛皮胶的35mm塑料培养皿中,每皿2ml,置标本于36℃,含10%CO2 的培养箱内培养。24 h后顷去培养皿内种植培养液,改用饲养培养液(同第二节)培养。接种第5 d,在培养皿中分别加入细胞分裂抑制剂5'-氟- 2'-脱氧尿苷15μg/ml和尿苷35μg/ml或加入阿糖胞苷 3μg/ml以抑制非神经细胞的过度增殖,作用48h 后更换新鲜培养液,以后每周换液2次,每次更换50%新鲜培养液。

2、新生大鼠海马神经元的生长分化和形态特征

新生大鼠海马神经元种植后12h,部分细胞可贴壁,呈圆形,其中少数神经细胞开始伸出1-2个突起。培养24h后,伸出突起的神经细胞逐渐增多,突起一般为20-40μm,长者可达60μm。培养3d后, 神经元突起进一步增多并延长,形成稀疏的网络。培养的海马细胞以锥体细胞为多见,胞体较大,直径6-12μm。随着培养时间的延长,神经元胞体逐渐增大,胞突主干和分技明显延长并增粗,形成更加稠密的网络。海马神经元在体外可维持培养2个月。

六、新生大鼠隔神经元分散培养

隔亦属大脑边缘系统,主要与一系例内脏活动、躯体活动,情绪活动有密切关系。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧隔区,培养方法同海马神经元培养。

2、新生大鼠隔神经元的生长分化和形态特征

新生大鼠隔区培养神经元的生长分化基本上与新生大鼠海马神经元相似。但隔神经元大多为具有两个突起的双极神经元,神经元胞体呈椭圆形, 直径6-8μm。随着培养时间的延长,神经元胞体逐渐增大,神经突起逐渐增粗, 并互相联络成网。新生大鼠隔神经元亦可持续培养2个月。

七、新生大鼠下丘脑神经元分散培养

下丘脑,作为神经系统和内分泌系统的连接点,在神经内分泌研究中有很重要的地位。它不仅通过神经-神经,神经—体液通路与垂体发生直接的联系,以兴奋与抑制两种不同的机制维持垂体内分泌的相对恒定,而且与脑干网状结构、皮质边缘系统等共同调节机体的各种活动。下丘脑的分泌功能以及其所分泌的各种肽类激素、神经多肽是下丘脑参与调节内脏活动、生理机能以及垂体内分泌的重要物质基础。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧下丘脑,培养方法同海马神经元培养。

2、新生大鼠下丘脑神经元的生长分化和形态特征

新生大鼠下丘脑神经元的生长分化和形态特征基本上和新生大鼠隔神经元相似。培养的下丘脑神经元大多为具有两个突起的双极神经元,神经元胞体呈椭圆形,直径6-8μm,偶见胞体较大(直径9-12μm)的多极神经细胞。随着培养时间的延长,下丘脑神经元胞体逐渐增大。下丘脑神经元亦可维持培养2个月。

八、新生大鼠大脑皮层神经元分散培养

大脑皮质是大脑半球最外表的一层灰质,大脑皮质内神经元的数量极大,其类型也很多,但均属多极神经元,神经元之间具有复杂的联系,反映皮质的高度发展。有人从机能上将皮质分为:感觉皮质、联络皮质、运动皮质。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧皮层,培养方法同海马神经元培养。

2、新生大鼠大脑皮层神经元的生长分化和形态特征

新生大鼠皮层元的生长分化和形态特征基本上和新生大鼠海马神经元相似。培养的皮层神经元中既可见到体积较大(直径8-12μm)的锥体细胞和颗粒细胞(如星状细胞、篮状细胞和梭形细胞),也可见到马提诺蒂细胞,胞体较小,呈三角形或多角形。随着培养时间的延长,神经元胞体逐渐增大,突起增粗。新生大鼠皮层神经元亦可持续培养2个月。

九、新生大鼠纹状体神经元培养

位于大脑皮质下,紧靠丘脑背外侧的几块灰质,称为基底神经节,它们包括尾状核、壳核和苍白球,前两者合起来又称为纹状体。纹状体是中枢神经系统的高级部位,在这里进行着运动机能的最高级整合,它们与随意运动的稳定、肌紧张和躯体运动的整合有密切关系。中脑黑质除含有较多的多巴胺(DA)神经元外,还含有γ-氨基丁酸(GABA)神经元等,纹状体是其主要的靶组织,共同组成黑质纹状体DA系统。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧纹状体,培养方法同海马神经元培养。

2、新生大鼠纹状体神经元的生长分化和形态特征

新生大鼠纹状体神经元的生长分化和形态特征基本上和新生大鼠隔神经元相似。培养的纹状体神经元大多为具有两个突起的双极神经元,神经元胞体呈椭圆形,直径6-8μm。随着培养时间的延长,纹状体神经元胞体逐渐增大。纹状体神经元亦可维持培养2个月。

十、新生大鼠中脑黑质神经元培养

黑质由中脑背侧的致密部和腹侧的网状部组成,中脑黑质是多巴胺神经元存在的部位,实验表明,大鼠中脑腹侧多巴胺在运动和行为中起着关键性的作用。黑质多巴胺能神经元退性病变可引起帕金森综合症。因此,多巴胺神经元的体外培养为多巴胺神经元的形态、受体分布、药物作用、电生理特性的研究以及多巴胺神经元移植研究提供了较好的实验手段。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧黑质,培养方法同海马神经元培养。

2、新生大鼠中脑黑质神经元的生长分化和形态特征

新生大鼠中脑黑质神经元的生长分化和形态特征基本上和新生大鼠下丘脑神经元相似。培养的中脑黑质神经元大多为具有两个突起的双极神经元,神经元胞体呈椭圆形,直径6-8μm,随着培养时间的延长,中脑黑质神经元胞体逐渐增大。中脑黑质神经元亦可维持培养2个月。

十一、新生大鼠小脑神经神经元培养

小脑由外层的灰质(皮质)、内部的白质和三对深部的核团(顶核、间位核和齿状核)组成。与大脑皮质相比,小脑皮质的结构和神经元环路的组成相对简单,整个小脑皮质共有三层结构:分子层、浦肯野细胞层和颗粒层。其中含有五种神经元,即颗粒细胞,浦肯野细胞、篮状细胞、星形细胞和高尔基细胞。小脑是中枢神经系统中最大的运动机构,主要作用是维持躯体平衡,调节肌肉张力和协调随意运动。小脑的另一个与运动有关的重要功能是在技巧性运动的获得和建立过程中发挥运动学习的作用。在体外培养系统中,小脑细胞大小和形态的特征明显,容易识别。另外,小脑缺陷神经突变的小鼠种系比较多,这些条件都使小脑细胞成为发育研究的良好对象。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下取脑、分离出双侧小脑,培养方法同海马神经元培养。

2、新生大鼠小脑神经细胞的生长分化和形态特征

新生大鼠小脑神经元的生长分化基本和新生大鼠皮层神经元相似。培养的小脑神经元以颗粒细胞为多见,体积较小,直径3-5μm,亦可见到一定数量的星状细胞,哺肯野细胞和篮状细胞(胞体直径6-8μm),它们均随着培养时间的延长,神经元胞体逐渐增大,突起逐渐增粗。新生大鼠小脑神经元亦可持续培养2个月。

十二、新生大鼠脑腺垂体细胞培养

大鼠的垂体分为前、中、后三叶,前叶亦称腺垂体,主要分泌生长激素、催乳素、各种促激素及黑素细胞刺激素。因此建立体外培养腺垂体细胞的方法,可用来探讨各种因素直接对细胞分泌功能的影响,以及开展神经内分泌分子生物学的研究。

1、材料和方法

取当天出生的Wistar大鼠,在无菌条件下分离出腺垂体,用0.125%胰蛋白酶消化(36℃、30min)分散后,用种植培养液(同第二节)稀释成2×106个细胞/ml密度的细胞液,接种于涂有小牛皮胶的35mm塑料培养皿中,每皿2ml,置标本于36℃,含10%CO2 的培养箱内培养。24 h后顷去培养皿内种植培养液,改用饲养培养液(同第二节)培养。以后每周换液2次,每次更换50%新鲜培养液。

2、新生大鼠脑腺垂体细胞的生长形态特征

接种后24h,新生大鼠脑腺垂体分散细胞即开始贴附在胶元薄膜上生长,脑腺垂体细胞最初分散或聚集成小团,随后迅速分裂增殖。细胞境界清楚,形状不规则,有圆形,卵圆或多角形。核位于胞体中央或偏于胞体一侧,可见1-2个核仁。随着培养时间的延长,脑腺垂体细胞胞体逐渐增大,形成单层,铺满皿壁底层。脑腺垂体细胞可持续培养1个月。

十三、神经胶质细胞培养

(一)雪旺细胞

雪旺细胞(Schwann cell,SC)是外周神经系统最主要的胶质细胞,也是外周神经的成髓鞘细胞;它形成髓鞘,或包裹轴突而不形成髓鞘。雪旺细胞的功能极其活跃,一旦神经受损,它能反应性分裂增殖,分泌神经营养因子,产生细胞外基质和细胞粘附分子,对神经元及其轴突起营养和修复作用。近年来的研究表明,雪旺细胞也能促进中枢神经对脱髓鞘损伤的修复,如对脊髓的再生,对视网膜神经节以及对隔-海马通路再生等。说明雪旺细胞也能改善中枢神经再生的微环境,因而近年来对雪旺细胞的研究,尤其是体外培养研究已成热点。

1、材料和方法

雪旺细胞培养取材于各类哺乳动物的外周神经和背根神经节,取孵化8-12d鸡胚、出生1-3d 的小鼠或大鼠和人工流产的人胎儿,在无菌条件下用解剖镊分离出神经节,剥除神经节被膜, 用0.125%胰蛋白酶消化(37℃ 30min)后用培养液( 90% DMEM,10 % 胎牛血清,2mM谷氨酰胺)吹打分散成细胞悬液,先接种于玻璃培养瓶中,于培养箱中孵育30 min后,翻转瓶子吸出细胞悬液,除去已贴壁的成纤维细胞,再接种于涂有鼠尾胶的35mm塑料培养皿中,种植密度为0.2×105个细胞/ml,每皿2ml细胞悬液置。置36℃、10%CO2培养箱中培养。接种第3 d,在培养皿中分别加入细胞分裂抑制剂5-氟-2'-脱氧尿苷15μg/ml和尿苷35μg/ml,以进一步去除成纤维细胞,作用48小时后更换新鲜培养液,以后每周换液两次,每次更换一半新鲜饲养培养液。

2、雪旺细胞的生长和形态特征

培养15d后可获得较高纯度的雪旺细胞,雪旺细胞呈双极梭状,核卵居中,相互平行排列,经S-100免疫组织化学染色呈阳性反应。增殖分裂的雪旺细胞可用于进一步传代培养,也可进行冷冻保存备用。

省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
(二)星形胶质细胞

星形胶质细胞是胶质细胞中体积最大,数量最多的一种,胞体呈星形,核大,呈卵圆形,染色质稀少,星形胶质细胞分两类,一类为原浆性星形胶质细胞(protoplasmic astrocyte),其突起短粗,分枝多。另一种为纤维性星形胶质细胞(fibrous astrocyte),它的突起细长,分枝少。纤维性星形胶质细胞是与少突胶质细胞源自同一前体细胞。星形胶质细胞具有多种功能,中枢神经系统内神经元及其突起间的空隙几乎全部由星形胶质细胞充填,起结构的支持作用,星形胶质细胞的突起构成血脑屏障,星形胶质细胞能摄取和代谢某些神经递质如γ-氨基丁酸等。调节局部神经递质的浓度,使神经网络能平稳地发挥作用。还能吸收细胞间隙中过多的K+,为K+的存储库,通过调节K+的水平而影响神经元的电生理活动。星形胶质细胞能合成和分泌大量神经营养因子,有维持神经元生存和促进神经元突起生长的作用,亦能分泌白细胞介素,肿瘤坏死因子和干扰素等多种细胞因子,星形胶质细胞有分裂能力,在中枢神经系统损伤后,星形胶质细胞增生、肥大,填补缺损,形成胶质瘢痕。

(1)方法和结果

选择出生 2 d 的SD大鼠,无菌条件下分离出大脑皮层,用0.125%胰蛋白酶消化(37℃ 30min)后用培养液( 90% DMEM,10 % 胎牛血清,2mM谷氨酰胺)吹打分散成细胞悬液,先接种于玻璃培养瓶中,于培养箱中孵育30 min后,翻转瓶子吸出细胞悬液,除去已贴壁的成纤维细胞,再接种于涂有鼠尾胶的75cm2塑料培养瓶中, 种植密度为1×105 个细胞/cm2,每瓶10ml细胞悬液置。置36℃、10%CO2 培养箱中培养。每周换液2 次,培养10-14h,细胞分为两层,下一层为I型胶质细胞即原浆形胶质细胞,上一层是O-2A前体细胞,根据两类细胞贴壁能力的差异,以振荡培养技术进行分选,在37℃摇床上振荡,16 h(180r/min)O-2A前体细胞可被摇下来,摇下来的细胞种植在涂有鼠尾胶的75mcm2塑料培养瓶中,培养液使用20 % 胎牛血清促进O-2A前体细胞分化为II型胶质细胞即纤维型胶质细胞。可分裂增殖的原浆形胶质细胞和纤维型胶质细胞可用于进一步传代培养,也可进行冷冻保存备用。纯度鉴定可用胶质纤维酸性蛋白抗体(GFAP)染色确定。

(三)少突胶质细胞

1、方法和结果

少突胶质细胞培养方法同星形胶质细胞培养。少突胶质细胞比星形胶质细胞小,光镜下少突胶质细胞胞体呈圆形或多角形,突起呈串珠状,根据其所在部位的不同可分为束间少突胶质细胞、神经元周围少突胶质细胞。在中枢神经系统内,少突胶质细胞主要形成及维持髓鞘。

讨论

在神经生理、生化和神经药理的研究中、神经细胞的体外培养日益受到重视,因为它是研究单个神经细胞功能和结构的适宜方法。

在体外培养条件下背根神经节、颈上交感节、胚胎脊髓和不同脑区 (海马、隔、下丘脑、大脑皮层、小脑和垂体细胞等)培养细胞的形态特征都不尽相同,这与它们具有不同功能有关。交感和感觉神经元以及不同脑区神经元的体外培养成功,为我们深入研究它们的结构和功能提供了合适的体外实验模型。

在背根节神经细胞培养过程中,我们观察到,早期感觉神经元发育阶段,NGF是必不可少的营养因子,但在培养后期,神经元已发育成熟,可能非神经细胞分泌的极少量NGF即能满足神经元生长需要,因此不另NGF也能维持长期培养。在上颈交感节细胞分散培养过程中, 我们亦观察到,若最初1-2d在培养液中缺乏 NGF,交感神经元突起不见生长,且大多死亡。培养15d或1个月时,如果培养液中未加入NGF,本来生长良好的神经元很快便出现颗粒变性或空泡,逐渐死亡。结果表明NGF对于促进神经突起生长和维持神经元生存有显著作用。

在神经细胞培养过程中,神经细胞的生长发育受到多种因素的影响,其中细胞接种密度对细胞生长发育影响较大,一般神经细胞的接种密度以0.5-1×106 个细胞/ml密度为宜,如每毫升中超过3×106个细胞/ml密度,将使细胞簇过大,而且培养皿内过分拥挤,影响存活和生长。但如果培养的细胞数目过少时,神经细胞的生长分化较差,因为神经细胞是一种细胞群体,它们相互之间具有营养和支持作用。其次是控制非神经元细胞过多增殖。

原代分散单层培养是神经细胞与非神经细胞的混合培养。其中胶质细胞等可在体外继续增殖,神经元则不能增殖而只能生长分化。当适量胶质细胞的存在是神经细胞长期培养的必要条件,但如果神经胶质细胞过渡增殖时,神经细胞的生长分化便受到一定影响,常使神经细胞提早开始退化。这可能是由神经胶质细胞频繁分裂过程中,夺取了神经细胞生长中需要的某种营养成份。为保证神经元生长所需的营养,需在非神经细胞增殖的高峰即所谓“合流”(confluence)时,将一定量的抗DNA 药物加入培养液中以抑制其过渡增殖,实验证明,在培养第5d 或第7d时使用 5-氟-2'-脱氧尿苷15μg/ml和尿苷35μg/ml或阿糖胞苷3μg/ml,作用48h即停用可加快神经元的分化,延长培养时间。

再次是所配制的培养液必须保持一定的等渗性,溶解于培养基的物质浓度所产生的等渗性必须与细胞外液的液体一致,培养神经细胞可将培养液的渗透压调节到320-330 mOso 较为合适。如果培养液是高渗的,细胞会失去水份并发生皱缩,如果培养液是低渗的,细胞会吸收水分而膨胀。两者不利于神经细胞的存活和生长。

最后需注意的是须掌握换液的次数和数量。为了使神经细胞得到生长分化必须的营养,必须经常进行换液,但如果换液次数太多,并不利于神经细胞的生长分化,因为神经细胞在培养液中需要适当的环境,而且它本身也有创造良好环境的能力,如果频繁换液就会破环这种环境。我们每周换液二次,每次只换一半,保留一半原液。除此之外,培养液的PH、温度等均对神经元的生长发育有影响,因而在实验中必须加以注意。

猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴