主题:【原创】EP6.0蛋白质翻译

浏览0 回复14 电梯直达
ladyli
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
该帖子已被hyheying设置为精华;
再传些上来

蛋白质.doc
方法3
这个方法(通常称为布拉德福德法)是基于当蛋白质与酸性蓝90燃料结合时在波长470nm-595nm之间有一个吸收峰。酸性蓝90燃料很容易与蛋白质中的精氨酸和赖氨酸的残基结合导致对于不同蛋白质试验具有特异的反应。因此作为参考物的蛋白质必须测定的蛋白质相同。有相对较少的干扰物,但是最好避免试验样品中的洗涤剂和两性电解质。强碱性样品可能会干扰酸性试剂。

使用标准蒸馏水来配置此方法中用到的缓冲液和试剂。

试验溶液.将待测蛋白质的参考物质溶解在描述的缓冲溶液中配制成浓度在标准曲线范围内的溶液。

参考溶液.用描述的缓冲溶液溶解待测蛋白质的参考物质。用相同的缓冲溶液来稀释这个蛋白质溶液制的不少于5个参考溶液,溶液的蛋白质浓度在一个合适的范围内均匀分布在0.1mg/ml和1mg/ml之间。

空白.用使用的缓冲溶液来制备测试溶液和参考溶液。

酸性蓝90试剂.溶解0.10g酸性蓝90标准试剂在50ml标准酒精溶液中。加入100ml磷酸标准溶液,用标准蒸馏水稀释至1000ml,混匀。过滤此溶液,室温条件下储存在棕色瓶中。储存期间,燃料发生缓慢的沉淀。使用前过滤试剂。

步骤.每个测试溶液和空白的参比溶液取0.100ml,加5ml酸性蓝90试剂。倒转混匀。防止发泡,发泡会导致重复性较差。测定标准溶液和待测溶液595nm处的吸光度(2.5.25),把空白作为补偿液体。不要使用石英(二氧化硅)分光光度计比色皿,因为石英会和这些染料结合。

计算.吸光度与蛋白质浓度的关系是非线性的;然而,假如,制备标准曲线的浓度范围足够小,后者将接近线性。以标准溶液的吸光度对蛋白质的浓度作图,再线性回归得到标准曲线。从标准曲线和待测溶液的吸光度来计算得到待测溶液的蛋白质浓度。

方法4
这个方法(通常被称为喹啉酸法或者BCA法)这个基于蛋白质与铜离子反应生成亚铜离子。喹啉酸试剂用于检测亚铜离子。很少物质会干扰这个反应。当存在干扰物质的影响时可以通过稀释来最小化干扰,但必须使得待测的蛋白质的浓度足够精确测量。或者,在方法2中给出的蛋白质凝结的的程序可能被用于去除干扰物质。因为不同的蛋白质种类可能给出不同的颜色反应强度,参考蛋白质和待测蛋白质必须相同。
使用蒸馏水R来制备此法中用到的所有缓冲溶液和试剂。
测试溶液.用描述的缓冲溶液溶解适宜数量的待测物质制得浓度在参考溶液浓度范围内的溶液。
参考溶液.用描述的缓冲溶液溶解蛋白质的参考物质。用同一缓冲稀释部分该溶液制得不少于5个参考溶液,制的的溶液蛋白质浓度均匀分布在10μg/ml-1200μg/ml之间的合适的范围内。
空白.使用缓冲溶液来制备测试溶液和参比溶液。
BCA试剂.溶解10g的二钠试剂R,20g碳酸钠一水合物R,1.6g酒石酸钠R,4g氢氧化钠R,和9.5g碳酸氢钠R在蒸馏水(R)中。如果有必要,用氢氧化钠溶液R或者碳酸氢钠溶液R调节pH至11.25,用蒸馏水R稀释至1000ml,混匀。

步骤.分别将0.1ml的参比溶液,待测溶液,和空白溶液与铜-BCA试剂混合。在37℃条件下反应30min,注意时间,允许混合物冷却至室温。在反应中点60min内,562nm处用石英比色杯测定参考物质和待测物质的吸光度(2.2.25),用空白溶液作为补偿溶液。待溶液冷却至室温后,颜色强度逐渐加深。

计算.吸光度对蛋白质的浓度的关系不是线性的。然而,假如,制备标准曲线的浓度范围足够小,后者将接近线性。以参比溶液的吸光度对蛋白质的浓度作图,再线性回归得到标准曲线。从标准曲线和待测溶液的吸光度来计算得到待测溶液的蛋白质浓度。

方法5
这个方法(通过常称为缩二脲法)基于铜离子与蛋白质在碱性溶液中的反应而引起的545nm处的吸光度的变化。这个试验在IgG与白蛋白之间差异不大。氢氧化钠和缩二脲试剂的加入作为一个联合试剂,在氢氧化钠加入后不充分的混合,或者在氢氧化钠溶液的加入和缩二脲试剂的加入之间额外的时间将会使得IgG样品比白蛋白样品较高的反应。三氯酸原理用于减小干扰物质,也可以用于测定待测溶液中蛋白质的含量,在浓度小于500μg/ml的情况下。

使用蒸馏水R来制备所有此试验中用到的缓冲溶液和试剂。

待测溶液.用9g/l的氯化钠溶液R溶解适宜数量的待测物质制的浓度在参比溶液浓度范围内的溶液。
参比溶液. 用9g/l的氯化钠溶液R溶解待测蛋白质的参比物质。用9g/l的氯化钠溶液R稀释部分此溶液制的不少于3个参比溶液,这一列溶液的蛋白质浓度均匀分布在0.5mg/ml-10mg/ml之间的适宜范围内。

空白.使用9g/l的氯化钠溶液R。

缩二脲试剂.用10ml的蒸馏水溶解3.46g的硫酸铜,冷却(溶液A)。用80ml的热蒸馏水溶解34.6g的柠檬酸钠R20.0g的无水碳酸钠R。冷却(溶液B)。混合溶液A和溶液B,用蒸馏水R稀释至200ml假如试剂发生浑浊或者包含任何沉淀,不要使用此试剂。

步骤.在一个待测溶液中加入等体积的60g/l的氢氧化钠R,混合。立刻加入相当于0.4倍体积待测溶液的缩二脲试剂,迅速混匀。在15℃-25℃的条件下放置不少于15min。90min内加入缩二脲试剂,在最大吸收波长545nm处测定参比溶液和待测溶液的吸光度(2.2.25),用空白溶液作为补偿液体。在蛋白质浓度计算中,任何产生混浊或者沉淀的溶液都是不被接受的。

计算.吸光度对蛋白质浓度的关系接近线性在参比溶液指定的蛋白质浓度范围内。
以参比溶液的吸光度对蛋白质浓度作图,利用线性回归做标准曲线。计算标准曲线的相关系数,一个好的系统产生的标准曲线的相关系数不少于0.99.从标准曲线和待测溶液的吸光度来测定待测溶液中的蛋白质浓度。

干扰物质.为了家少干扰物质的影响,蛋白质可以按以下步骤进行沉淀:加入0.1倍体积的500g/l三氯酸溶液R到1倍体积待测样品溶液中,取走上清液,用较小体积的0.5M的氢氧化钠溶解沉淀。用制得的溶液来制备待测溶液。

方法6
荧光法是基于o-邻苯二醛对蛋白质的化学衍生反应。它与蛋白质的伯胺基发生反应(N-末端氨基酸和θ-氨基的赖氨酸残基)此法的灵敏度可以通过在加o-邻苯二醛之前按水解蛋白质来增加。水解可以使组成氨基酸的α-氨基可以和邻苯二醛试剂反应。此法需要非常少量的蛋白质。伯胺,例如三(羟甲基)氨基甲烷和氨基酸缓冲溶液,与邻苯二醛反应的必须避免或者替换。高浓度的氨水与邻苯二醛反应。氨与邻苯二醛反应产生的荧光不稳定。自动化程序的使用来标准化这个程序可以增加测试的准确性和精密度。

待测溶液.用9g/l氯化钠溶液R溶解适宜数量待测物质制的浓度在参比溶液浓度范围内的溶液。在加邻苯二醛试剂之前调节8-10.5。

参比溶液.溶解蛋白质的参比溶液杂9g/l的氯化钠溶液R中。用9g/l氯化钠溶液R稀释部分此溶液制的不少于5个参比溶液,参比溶液蛋白质浓度均匀分布在10μg/ml和200μg/ml之间的适宜范围内。在加邻苯二醛试剂之前调节8-10.5。

空白溶液. 用9g/l氯化钠溶液R。

硼酸盐缓冲液.用蒸馏水R溶解61.83g的硼酸R,用氢氧化钾R调节pH10.4,用蒸馏水稀释至1000ml,混匀。

邻苯二醛储备溶液.用1.5ml的甲醇溶解1.20g的邻苯二醛试剂R,加入100ml的硼酸缓冲溶液,混匀。加0.6ml300g/l 十二烷基醚聚乙二醇23溶液R,混匀。室温下储存,3星期内使用。

邻苯二醛试剂.在5ml的邻苯二醛储存溶液中加入15μl的2-巯基乙醇R。至少在使用前30min内植被。24h内使用。

步骤.将0.1ml的邻苯二醛试剂与10μl待测溶液和每个参比溶液混合,室温摁下放置15min。加入0.5M的氢氧化钠3ml混匀。在激发波长340nm和发射波长440和455nm处测得参比溶液和待测溶液的荧光强度(2.2.21)。因为照射荧光强度降低,对一个给定的样品的荧光强度只测定一次。

计算.荧光强度与蛋白质浓度的关系是线性的。用参比溶液的荧光强度对蛋白质浓度作图,线性回归得到标准曲线,根据待测溶液的荧光强度得到待测溶液的浓度。
附件:
为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
何当奇
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 ladyli(ladyli) 发表:
再传些上来

蛋白质.doc
蛋白质.doc


怎么都是中文的?
原文能否一起上传?
ladyli
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 ladyli(ladyli) 发表:
我自己翻译的,没有电子版的EP


英文原版我来上传吧
社区=冬季=
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 影※子(hyheying) 发表:
原文由 ladyli(ladyli) 发表:
我自己翻译的,没有电子版的EP


英文原版我来上传吧


你咋会有??难道
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 冬季(lylsg555) 发表:
原文由 影※子(hyheying) 发表:
原文由 ladyli(ladyli) 发表:
我自己翻译的,没有电子版的EP


英文原版我来上传吧


你咋会有??难道


想什么呢?是英文原版,有什么不对的吗?
ladyli
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
方法4中的空白溶液中一个被翻译成二钠试剂的是不对的哦,我没翻译出来,呵呵,不好意思
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
蛋白质共有7种检测方法,楼主是从方法3开始翻译的哦,咋没有方法1、2和7呢?
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
METHOD 3
This method (commonly referred to as the Bradford assay) is based on the absorption shift from 470 nm to 595 nm
observed when the acid blue 90 dye binds to protein. The acid blue 90 dye binds most readily to arginine and lysine
residues in the protein which can lead to variation in the response of the assay to different proteins. The protein used as reference substance must therefore be the same as the protein to be determined. There are relatively few interfering substances, but it is preferable to avoid detergents and ampholytes in the test sample. Highly alkaline samples may interfere with the acidic reagent.
Use distilled water R to prepare all buffers and reagents used for this method.
Test solution. Dissolve a suitable quantity of the substance to be examined in the prescribed buffer to obtain a solution having a concentration within the range of the standard curve.
Reference solutions. Dissolve the reference substance for the protein to be determined in the prescribed buffer.
Dilute portions of this solution with the same buffer to obtain not fewer than five reference solutions having protein
concentrations evenly spaced over a suitable range situated between 0.1 mg/ml and 1 mg/ml.
Blank. Use the buffer used to prepare the test solution and the reference solutions.
Acid blue 90 reagent. Dissolve 0.10 g of acid blue 90 R in 50 ml of alcohol R. Add 100 ml of phosphoric acid R, dilute
to 1000 ml with distilled water R and mix. Filter the solution and store in an amber bottle at room temperature. Slow
precipitation of the dye occurs during storage. Filter the reagent before using.
Procedure. Add 5 ml of acid blue 90 reagent to 0.100 ml of each reference solution, of the test solution and of the
blank. Mix by inversion. Avoid foaming, which will lead to poor reproducibility. Determine the absorbances (2.2.25) of
the standard solutions and of the test solution at 595 nm, using the blank as compensation liquid. Do not use quartz
(silica) spectrophotometer cells because the dye binds to this material.
Calculations. The relationship of absorbance to protein concentration is non-linear; however, if the range of
concentrations used to prepare the standard curve is sufficiently small, the latter will approach linearity. Plot
the absorbances of the reference solutions against protein concentrations and use linear regression to establish the
standard curve. From the standard curve and the absorbance of the test solution, determine the concentration of protein
in the test solution.
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
METHOD 4
This method (commonly referred to as the bicinchoninic acid or BCA assay) is based on reduction of the cupric (Cu2+) ion to cuprous (Cu1+) ion by protein. The bicinchoninic acid reagent is used to detect the cuprous ion. Few substances interfere with the reaction. When interfering substances are present their effect may be minimised by dilution, provided that the concentration of the protein to be determined remains sufficient for accurate measurement. Alternatively, the protein precipitation procedure given in Method 2 may be used to remove interfering substances. Because different protein species may give different colour response intensities, the reference protein and protein to be determined must be the same.
Use distilled water R to prepare all buffers and reagents used for this method.
Test solution. Dissolve a suitable quantity of the substance to be examined in the prescribed buffer to obtain a solution having a concentration within the range of the concentrations of the reference solutions.
Reference solutions. Dissolve the reference substance for the protein to be determined in the prescribed buffer.
Dilute portions of this solution with the same buffer to obtain not fewer than five reference solutions having protein concentrations evenly spaced over a suitable range situated between 10 μg/ml and 1200 μg/ml.
Blank. Use the buffer used to prepare the test solution and the reference solutions.
BCA reagent. Dissolve 10 g of disodium bicinchoninate R, 20 g of sodium carbonate monohydrate R, 1.6 g of sodium tartrate R, 4 g of sodium hydroxide R, and 9.5 g of sodium hydrogen carbonate R in distilled water R. Adjust, if necessary, to pH 11.25 with a solution of sodium hydroxide R or a solution of sodium hydrogen carbonate R. Dilute to 1000 ml with distilled water R and mix.
Copper-BCA reagent. Mix 1 ml of a 40 g/l solution of copper sulphate R and 50 ml of BCA reagent.
Procedure. Mix 0.1 ml of each reference solution, of the test solution and of the blank with 2 ml of the copper-BCA reagent. Incubate the solutions at 37 °C for 30 min, note the time and allow the mixtures to cool to room temperature. Within 60 min of the end of incubation, determine the absorbances (2.2.25) of the reference solutions and of the test solution in quartz cells at 562 nm, using the blank as compensation liquid. After the solutions have cooled to room temperature, the colour intensity continues to increase gradually.
Calculations. The relationship of absorbance to protein concentration is non-linear ; however, if the range of concentrations used to prepare the standard curve is sufficiently small, the latter will approach linearity. Plot the absorbances of the reference solutions against protein concentrations and use linear regression to establish the standard curve. From the standard curve and the absorbance of the test solution, determine the concentration of protein in the test solution.
影子
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
METHOD 5
This method (commonly referred to as the biuret assay) is based on the interaction of cupric (Cu2+) ion with protein in alkaline solution and resultant development of absorbance at 545 nm. This test shows minimal difference between equivalent IgG and albumin samples. Addition of the sodium hydroxide and the biuret reagent as a combined reagent, insufficient mixing after the addition of the sodium hydroxide, or an extended time between the addition of the sodium hydroxide solution and the addition of the biuret reagent will give IgG samples a higher response than albumin samples. The trichloroacetic acid method used to minimise the effects of interfering substances also can be used to determine the protein content in test samples at concentrations below 500 μg/ml.
Use distilled water R to prepare all buffers and reagents used for this method.
Test solution. Dissolve a suitable quantity of the substance to be examined in a 9 g/l solution of sodium chloride R to obtain a solution having a concentration within the range of the concentrations of the reference solutions.
Reference solutions. Dissolve the reference substance for the protein to be determined in a 9 g/l solution of sodium chloride R. Dilute portions of this solution with a 9 g/l solution of sodium chloride R to obtain not fewer than three reference solutions having protein concentrations evenly spaced over a suitable range situated between 0.5 mg/ml and 10 mg/ml.
Blank. Use a 9 g/l solution of sodium chloride R.
Biuret reagent. Dissolve 3.46 g of copper sulphate R in 10 ml of hot distilled water R, and allow to cool (Solution A).
Dissolve 34.6 g of sodium citrate R and 20.0 g of anhydrous sodium carbonate R in 80 ml of hot distilled water R, and allow to cool (Solution B). Mix solutions A and B and dilute to 200 ml with distilled water R. Use within 6 months. Do not use the reagent if it develops turbidity or contains any precipitate.
Procedure. To one volume of the test solution add an equal volume of a 60 g/l solution of sodium hydroxide R and mix. Immediately add biuret reagent equivalent to 0.4 volumes of the test solution and mix rapidly. Allow to stand at a temperature between 15 °C and 25 °C for not
less than 15 min. Within 90 min of addition of the biuret reagent, determine the absorbances (2.2.25) of the reference solutions and of the test solution at the maximum at 545 nm, using the blank as compensation liquid. Any solution that develops turbidity or a precipitate is not acceptable for calculation of protein concentration.
Calculations. The relationship of absorbance to protein concentration is approximately linear within the indicated range of protein concentrations for the reference solutions. Plot the absorbances of the reference solutions against protein concentrations and use linear regression to establish the standard curve. Calculate the correlation coefficient for the standard curve. A suitable system is one that yields a line having a correlation coefficient not less than 0.99. From the standard curve and the absorbance of the test solution, determine the concentration of protein in the test solution.
Interfering substances. To minimise the effect of interfering substances, the protein can be precipitated from the test sample as follows : add 0.1 volumes of a 500 g/l solution of trichloroacetic acid R to 1 volume of a solution of the test sample, withdraw the supernatant layer and dissolve the precipitate in a small volume of 0.5 M sodium hydroxide.
Use the solution obtained to prepare the test solution.
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴