主题:【转帖】光子隧道效应与近场光学显微镜

浏览0 回复1 电梯直达
我要改名
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
二十世纪七十年代末德裔物理学家葛.宾尼和他的导师海.罗雷尔在IBM公司设在瑞士苏黎士的实验室进行超导实验时,他们并没有把自己的有关超导隧道效应的研究与新型显微镜的发明联系到一起。但是真空中超导隧道谱的研究已经为他们今后发明扫描隧道显微镜准备了坚实的理论和实验基础。一次偶然的机会,他们读到了物理学家罗伯特·杨撰写的一篇有关“形貌仪”的文章。这篇文章中有关驱动探针在样品表面扫描的方法使他们突发奇想:难道不能利用导体的隧道效应来探测物体表面并得到表面的形貌吗?以后的事实证明,这真是一个绝妙的想法。经过师生两人的不懈努力,1981年,世界上第一台具有原子分辨率的扫描隧道显微镜终于诞生了。        扫描隧道显微镜的英文名称是 ScanningTunneling Microscope,简称为STM。STM具有惊人的分辨本领,水平分辨率小于0.1纳米,垂直分辨率小于0.001纳米。一般来讲,物体在固态下原子之间的距离在零点一到零点几个纳米之间。在扫描隧道显微镜下,导电物质表面结构的原子、分子状态清晰可见。下图显示的是硅表面重构的原子照片,照片上,硅原子在高温重构时组成了美丽的图案。


根据量子力学理论的计算和科学实验的证明,当具有电位势差的两个导体之间的距离小到一定程度时,电子将存在一定的几率穿透两导体之间的势垒从一端向另一端跃迁。这种电子跃迁的现象在量子力学中被称为隧道效应,而跃迁形成的电流叫做隧道电流。之所以称为隧道,是指好象在导体之间的势垒中开了个电流隧道一样。隧道电流有一种特殊的性质,既对两导体之间的距离非常敏感,如果把距离减少0.1纳米,隧道电流就会增大一个数量级。

为您推荐
您可能想找: 生物显微镜 询底价
专属顾问快速对接
立即提交
我要改名
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
现在我们把两个导体换成上图所示的尖锐的金属探针和平坦的导电样品,在探针和样品之间加上电压。当我们移动探针逼近样品并在反馈电路的控制下使二者之间的距离保持在小于1纳米的范围时,根据前面描述的隧道效应现象,探针和样品之间产生了隧道电流。我们曾经说过,隧道电流对距离非常敏感。当移动探针在水平方向有规律的运动时,探针下面有原子的地方隧道电流就强,而无原子的地方电流就相对弱一些。把隧道电流的这个变化记录下来,再输入到计算机进行处理和显示,就可以得到样品表面原子级分辨率的图象。
        由此引出光学隧道效应和近场光学显微镜也就很自然了。
        科学界把探针与样品之间的距离小于几十纳米的范围称为近场,而大于这个距离的范围叫做远场。显然,STM、AFM等利用探针在样品表面的扫描的方法属于近场探测,而对于光学显微镜、电子显微镜等远离样品表面进行观测的方法称为远场方法。
      正如电子具有隧道效应一样,光子也具有光子隧道效应。既然可以利用电子的隧道效应成象,是否也能利用光子隧道效应成象呢?这的确是个很好的主意,看来你和科学家想到一起了。我们都知道,传统光学显微镜的分辨率不能超过光波波长的一半,这是限制光学显微镜分辨本领的桎梏。研究发现,物体受光波照射后,离开物体表面的光波分为两种成份:一部分光向远方传播,这是传统光学显微镜能接收的信息;而另一部分光波只能沿物体表面传播,一旦离开表面就很快衰减。这部分在近场传播的光波又叫隐失波。由于隐失波携带有研究样品表面非常有用的信息,科学家一直设想能对这种近场的光波加以研究利用。STM新颖的设计思想的出现,为近场光学的研究提供了思路。于是一种新型的科研仪器,近场光学显微镜诞生了。



上面是近场光学显微镜的原理示意图。将一个同时具有传输激光和接收信号功能的光纤微探针移近样品表面,微探针表面除了尖端部分以外均镀有金属层以防止光信号泄露,探针的尖端未镀金属层的裸露部分用于在微区发射激光和接收信号。当控制光纤探针在样品表面扫描时,探针一方面发射激光在样品表面形成隐失场,另一方面又接收10-100纳米范围内的近场信号。探针接收到的近场信号经光纤传输到光学镜头或数字摄像头进行记录、处理,在逐点还原成图象等信号。近场光学显微镜的其它部分与STM或AFM很相似。
        由于近场光学显微镜探测的是隧道光子,而光子又具有许多独特的性质:例如,没有质量、电中性等,因此,近场光学显微镜在纳米科技中扮演的角色是其它扫描探针显微镜所不可替代的。
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴