主题:这里越来越繁荣,为了表示庆贺,作为版主我拿出我最好的东西和大家分享!

浏览0 回复44 电梯直达
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
Bioelectronics-From Theory to Applications 这是一本与生物芯片非常相关的书,你总会在其中发现你感兴趣的内容!有了它,你可以向世界最前沿的技术学习!

Edited by:Itamar Willner and Eugenii Katz

下面是本书的目录,为了不致造成大家认识上的混乱,我没有自作聪明地给出中文翻译,呵呵,也没这个能力
第一章 Bioelectronics – An Introduction
第二章 Electron Transfer Through Proteins
2.1 Electronic Energy Landscapes 15
2.2 Theory of Electron Tunneling 15
2.3 Tunneling Pathways 17
2.4 Coupling-limited ET Rates and Tests of the Pathway Model 19
2.5 Multiple Tunneling Pathway Models 23
2.6 Interprotein Electron Transfer: Docking and Tunneling 27
2.7 Some New Directions in Electron Transfer Theory and Experiment 28
2.8 Concluding Remarks 31
第三章 Reconstituted Redox Enzymes on Electrodes: From Fundamental
Understanding of Electron Transfer at Functionalized Electrode
Interfaces to Biosensor and Biofuel Cell Applications
3.1 Introduction 35
3.2 Electrodes Functionalized with Reconstituted Redox Proteins 43
3.2.1 Reconstituted Flavoenzyme-Electrodes Using Molecular or Polymer Relay Systems 43
3.2.2 Electrical Contacting of Flavoenzymes by Reconstitution on Carbon
Nanotubes and Conducting Polymer Wires 53
3.2.3 Electrical Contacting of Flavoenzymes by Means of Metallic
Nanoparticles 57
3.2.4 Integrated Electrically Contacted Electrodes Composed
of Reconstituted Quinoproteins 65
3.2.5 Reconstituted Electrically Contacted Hemoproteins 67
3.2.6 Reconstituted de novo Hemoproteins on Electrodes 69
3.3 Electrical Contacting of Redox Proteins by Cross-linking
of Cofactor-Enzyme Affinity Complexes on Surfaces 73
3.3.1 Integrated NAD(P)+-Dependent Enzyme-Electrodes 73
3.3.2 Integrated Electrically Contacted Hemoprotein Electrodes 80
3.4 Reconstituted Enzyme-Electrodes for Biofuel Cell Design 83
3.5 Conclusions and Perspectives 91
References 93
第四章 Application of Electrically Contacted Enzymes for Biosensors
4.1 Introduction 99
4.2 Biosensors – Precursors of Bioelectronics 99
4.3 Via Miniaturization to Sensor Arrays – The Biochip 102
4.4 The Route to Electrically Contacted Enzymes in Biosensors 104
4.5 Routine Applications of Enzyme Electrodes 107
4.6 Research Applications of Directly Contacted Proteins 109
4.6.1 Protein Electrodes for the Detection of Oxygen-derived
Radicals 109
4.6.2 Cytochrome P 450 – An Enzyme Family Capable of Direct Electrical
Communication 117
4.7 Conclusions 123
References 123
第五章 Electrochemical DNA Sensors
5.1 Introduction 127
5.1.1 Indicator Electrodes 128
5.1.2 Electrochemical Methods 128
5.2 Natural Electroactivity and Labeling of Nucleic Acids 129
5.2.1 Electroactivity of Nucleic Acid Components 129
5.2.2 Analysis of Unlabeled Nucleic Acids 131
5.2.3 Electroactive Labels of Nucleic Acids 136
5.2.4 Signal Amplification 140
5.3 Sensors for DNA and RNA Hybridization 140
5.3.1 DNA Hybridization 142
第六章 Probing Biomaterials on Surfaces at the Single Molecule Level
for Bioelectronics
6.1 Methods for Achieving Controlled Adsorption of
Biomolecules 194
6.2 Methods for Investigating Adsorbed Biomolecules 195
6.3 Surfaces Patterned with Biomolecules 197
6.4 Attempts at Addressing Single Biomolecules 201
6.5 Conclusions 205
References 207




为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
第七章 Interfacing Biological Molecules with Group IV Semiconductors
for Bioelectronic Sensing
7.1 Introduction 209
7.2 Semiconductor Substrates for Bioelectronics 210
7.2.1 Silicon 210
7.2.2 Diamond 211
7.3 Chemical Functionalization 213
7.3.1 Covalent Attachment of Biomolecules to Silicon Surfaces 213
7.3.2 Hybridization of DNA at DNA-modified Silicon Surfaces 215
7.3.3 Covalent Attachment and Hybridization of DNA at Diamond
Surfaces 217
7.4 Electrical Characterization of DNA-modified Surfaces 219
7.4.1 Silicon 219
7.4.2 Impedance Spectroscopy of DNA-modified Diamond Surfaces 225
7.5 Extension to Antibody–Antigen Detection 225
7.6 Summary 227
References 228
第八章 Biomaterial-nanoparticle Hybrid Systems for Sensing
and Electronic Devices
8.1 Introduction 231
8.2 Biomaterial–nanoparticle Systems for Bioelectrochemical
Applications 232
8.2.1 Bioelectrochemical Systems Based on Nanoparticle-enzyme
Hybrids 232
8.2.2 Electroanalytical Systems for Sensing of Biorecognition Events Based on
Nanoparticles 235
8.3 Application of Redox-functionalized Magnetic Particles for Triggering and
Enhancement of Electrocatalytic and Bioelectrocatalytic Processes 250
8.4 Conclusions and Perspectives 259
References 261
第九章 DNA-templated Electronics
9.1 Introduction and Background 265
9.2 DNA-templated Electronics 266
9.3 DNA Metallization 268
9.4 Sequence-specific Molecular Lithography 271
9.5 Self-assembly of a DNA-templated Carbon Nanotube Field-effect
Transistor 276
9.6 Summary and Perspective 279
References 284
第十章 Single Biomolecule Manipulation for Bioelectronics
10.1 Single Molecule Manipulation 287
10.1.1 Glass Microneedle 289
10.1.2 Laser Trap 289
10.1.3 Space and Time Resolution of Nanometry 290
10.1.4 Molecular Glues 291
10.1.5 Comparisons of the Microneedle and Laser Trap Methods 291
10.2 Mechanical Properties of Biomolecules 291
10.2.1 Protein Polymers 291
10.2.2 Mechanically Induced Unfolding of Single Protein Molecules 294
10.2.3 Interacting Molecules 296
10.3 Manipulation and Molecular Motors 297
10.3.1 Manipulation of Actin Filaments 298
10.3.2 Manipulation of a Single Myosin Molecule 300
10.3.3 Unitary Steps of Myosin 300
10.3.4 Step Size and Unconventional Myosin 302
10.3.5 Manipulation of Kinesin 303
10.4 Different Types of Molecular Motors 304
10.5 Direct Measurements of the Interaction Forces 304
10.5.1 Electrostatic Force Between Positively Charged Surfaces 305
10.5.2 Surface Force Property of Myosin Filaments 305
References 306
第十一章 Molecular Optobioelectronics
11.1 Introduction 309
11.2 Electronically Transduced Photochemical Switching of Redox-enzyme
Biocatalytic Reactions 310
11.2.1 Electronic Transduction of Biocatalytic Reactions Using Redox
Enzymes Modified with Photoisomerizable Units 312
11.2.2 Electronic Transduction of Biocatalytic Reactions Using Interactions
of Redox Enzymes with Photoisomerizable ‘‘Command Interfaces’’ 316
11.2.3 Electronic Transduction of Biocatalytic Reactions of Redox Enzymes
Using Electron Transfer Mediators with Covalently Bound
Photoisomerizable Units 322
11.3 Electronically Transduced Reversible Bioaffinity Interactions at
Photoisomerizable Interfaces 323
11.3.1 Reversible Immunosensors Based on Photoisomerizable Antigens 326
11.3.2 Biphasic Reversible Switch Based on Bioaffinity Recognition vents
Coupled to a Biocatalytic Reaction 330
11.4 Photocurrent Generation as a Transduction Means for iocatalytic and Biorecognition Processes 332
11.4.1 Enzyme-Biocatalyzed Reactions Coupled to Photoinduced Electron
Transfer Processes 332
11.4.2 Biorecognition Events Coupled to Photoinduced Electron ransfer
Processes 334
11.5 Conclusions 335
References 336
第十二章 The Neuron-semiconductor Interface
12.1 Introduction 339
12.2 Ionic–Electronic Interface 340
12.2.1 Planar Core-coat Conductor 343
12.2.2 Cleft of Cell-silicon Junction 346
12.2.3 Conductance of the Cleft 349
12.2.4 Ion Channels in Cell-silicon Junction 358
12.3 Neuron–Silicon Circuits 362
12.3.1 Transistor Recording of Neuronal Activity 362
12.3.2 Capacitive Stimulation of Neuronal Activity 367
12.3.3 Two Neurons on Silicon Chip 372
12.3.4 Toward Defined Neuronal Nets 377
12.4 Brain–Silicon Chips 383
12.4.1 Tissue-sheet Conductor 383
12.4.2 Transistor Recording of Brain Slice 385
12.4.3 Capacitive Stimulation of Brain Slices 388
12.5 Summary and Outlook 392
References 393
第十三章 S-Layer Proteins in Bioelectronic Applications
13.1 Introduction 395
13.1.1 Upcoming Nanotechnology Applications 396
13.2 S-layer Proteins and Porins 396
13.2.1 The Building Principles of Tailored S-layer Proteins Layers 397
13.2.2 Chemical Modification of S-layers 400
13.2.3 Interaction by Noncovalent Forces 401
13.3 Experimental Methods Developed for Hybrid Bioelectronic
Systems 402
13.3.1 Electron Microscopy 402
13.3.2 Combined X-Ray and Neutron Reflectometry 402
13.3.3 Atomic Force Microscopy Using Protein-functionalized AFM-cantilever Tips 403
13.3.4 Scanning Electrochemical Microscopy 404
13.4 Applications of S-layer Proteins at Surfaces 404
13.4.1 S-layer Proteins as Permeability Barriers 404
13.4.2 S-layer Proteins at Lipid Interfaces 405
13.4.3 Introduction of Supramolecular Binding Sites into S-layer Lattices 412
13.5 Molecular Nanotechnology Using S-layers 414
13.5.1 Patterning of S-layer Lattices by Deep Ultraviolet Irradiation (DUV) 414
13.5.2 Synthesis of Semiconductor and Metal Nanoparticles Using S-layer
Templates Design of Gold and Platinum Superlattices Using the
Crystalline Surfaces Formed by the S-layer Protein of Bacillus sphaericus
as a Biotemplate 416
13.5.3 Generation of S-layer Lattice-supported Platinum Nanoclusters 418
13.5.4 Formation and Selective Metallization of Protein Tubes Formed by the
S-layer Protein of Bacillus sphaericus NCTC 9602 419
13.5.5 S-layer/Cadmium Sulfide Superlattices 421
13.6 Immobilization and Electrochemical Conducting of Enzymes in
S-layer Lattices 421
13.6.1 S-layer and Glucose Oxidase-based Amperometric Biosensors 421
13.6.2 S-layer and Glucose Oxidase–based Optical Biosensors 422
13.7 Conclusions 423
References 423
第十四章 Computing with Nucleic Acids
14.1 Introduction 427
14.2 Massively Parallel Approaches 428
14.3 The Seeman–Winfree Paradigm: Molecular Self-assembly 435
14.4 The Rothemund–Shapiro Paradigm: Simulating State Machines 439
14.5 Nucleic Acid Catalysts in Computation 442
14.6 Conclusion 453
References 454
第十五章 Conclusions and Perspectives
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
chinatokorea
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
请问版本有没有一个文件形式的版本!!!随便做个沙发!!!
六脉神剑
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴