主题:【第七届原创】正交法优化车用金属催化器中贵金属前处理条件研究

浏览0 回复5 电梯直达
rosmarinic
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
维权声明:本文为v2770543原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。
引言

随着国内经济的快速发展,机动车辆的保有量迅速增加,机动车的废气污染导致环境空气质量的恶化,已经开始影响人们的身体健康,并引起了广泛的关注。为此为了减少机动车废气对环境空气的污染以满足日益严格的排放法规,加载车用催化转化器成为降低尾气污染物排放的一种有效措施。由于陶瓷载体生产成本低,容易制造成型,且具有抗冲击、抗压力、抗磨损、抗高温等优点,目前国内市场应用最广泛的主要以陶瓷为载体的催化转化器,但它的抗震性和热传导性差,而金属载体恰好可弥补这一缺点,安装金属载体催化转化器的机动车可快速起燃,能显著改善冷启动性能和废气排放。无论陶瓷载体还是金属载体的催化转化器,减少机动车废气排放的有效活性组分多采用贵金属元素,因而准确测定催化转化器的贵金属含量对于保证其催化性能满足国家法规具有重要的意义。

目前,对于陶瓷载体的催化转化器中贵金属分析的相关研究较多,消解方法主要是酸溶法、碱熔融法、火试金法、湿法冶金等,分离富集方法包括共沉淀法、萃取法、离子交换法、吸附法、液膜法、生物吸附等,仪器分析方法有火焰原子吸收光谱法、但以电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)为主。对于金属载体的催化转化器中贵金属的检测研究很少,催化器生产企业多以间接的方法测量(测定金属载体经过涂层浆料后剩余浆料中贵金属含量的变化),对很少对金属载体催化化器中的贵金属含量进行直接测定。为此,本文对金属载体催化器中贵金属含量的直接测定进行了研究,通过碱熔融法对金属载体催化转化器不同溶解条件及碲共沉淀条件进行试验比较,用ICP-MS作为最后分析测定,选出最佳的试验条件。

1 实验部分

1.1 仪器及工作条件

美国安捷伦科技有限公司生产的电感耦合等离子体质谱仪ICP-MS 7500a型;马弗炉;美国Millipore公司生产的Milli-Q Academic超纯水系统;莱伯泰科EH45A plus型电加热板。

ICP-MS7500a工作条件:入射功率1.38kw,工作气体为氩气(体积分数不小于99.9996%),冷却气流量15L/min,载气流量1.2L/min,辅助气流量0.0L/min,采样深度7.6,雾化室温度2,蠕动泵转速0.1rps,质谱扫描方式跳峰。

1.2 试剂材料

单元素标准储备溶液:PtPdRhInTl均为1000mg/L(国家有色金属及电子材料分析测试中心提供)。

氯化亚锡溶液(1mol/L):22.56g氯化亚锡溶于25mL盐酸,用水稀释到100mL

碲溶液(5g/L):0.625g二氧化碲溶于20mL 盐酸,用水稀释到100mL

盐酸、硝酸为优级纯,氢氟酸、过氧化钠为分析纯,实验用水为去超纯水。

1.3 实验方法

1.3.1分析样品制备


将金属载体(带有催化器外壳)放入烧杯中,加入盐酸与水体积比为11的盐酸,多次添加盐酸直至催化器内芯体全部溶解,然后进行负压抽滤溶解有样品的酸液,将滤饼和残渣收集在蒸发皿至于加热板上蒸干驱赶盐酸,再放入马弗炉中灰化。

灰化样品放入研磨机中进行混合研磨,研磨后样品进行过筛(孔径75μm,研磨后样品在200烘箱内烘约2h后置于干燥器中冷却备用。

1.3.2样品碱熔融处理

称取一定量过氧化钠(是样品称样量的5~20倍)均匀铺在刚玉坩埚底部,称取0.5g(精确至0.0001g)样品平铺在其上,将样品与过氧化钠混合,然后盖上坩埚盖放入马弗炉中,从室温升温至设定温度600-900并在设定温度保持10min-40min,碱熔融结束后,待马弗炉温度冷却至室温后取出坩埚。再将坩埚放入1000mL大烧杯中,倒入200mL盐酸与水体积比为13的盐酸,在加热板上加热至沸腾10min,取下冷却后洗出坩埚。

1.3.3碲共沉淀

加入一定量盐酸调节酸度(0mL-40mL),加入10mL 碲溶液到烧杯中,再加入5mL氯化亚锡溶液,放在加热板上微沸15min,再加入10mL 碲溶液和5mL 氯化亚锡溶液,煮沸一定时间(15min-60min)后,加入2mL氯化亚锡溶液看是否还有沉淀,如不再产生沉淀放置冷却,冷却后共沉淀颗粒变大。将共沉淀用溶剂过滤器过滤,用盐酸与水体积比为15盐酸洗涤沉淀及滤膜至无色。将沉淀和滤膜一起转入原烧杯中,加入王水10mL,加热溶解沉淀,冷却后将滤膜取出,将溶液倒入塑料瓶中定量待测。

1.3.4空白试验和验证试验

随同样品作空白试验和同类型标准物质的验证试验。

1.3.5测定方法

依次测定标准溶液后,根据标准溶液系列浓度绘



制成标准曲线。分别测定空白溶液和样品溶液,根据校准曲线测定样品中各元素的浓度,然后计算出样品中相应各元素的含量。

1.4 正交试验设计

以上进行的是单因素试验,得出的结果只是单个因素对回收率的影响,不能确定多个因素同时作用下哪个因素对回收率的影响最大。在上述单因素试验的基础上,选取过氧化钠加入量、熔融温度、加入盐酸体积、碲沉淀时间这四个因素进行正交试验。设计正交实验L934)见表1

表1  正交试验因素水平表

Table 1  Factors and levels oforthogonal experiment

因素



 

水平

过氧化钠加入量(倍)

熔融温度(

加入盐酸体积(mL

碲沉淀时间(min

1

5

600

0

15

2

10

700

10

30

3

15

800

20

45



1.5 分析元素质量数的选择

原则是分析元素该质量数的丰度较大且对该质量数的干扰元素较少。

1.5.1同位素丰度分布

选取分析元素质量数相对要选取丰度较大的质量数,Pt质量数为194195196198,其丰度百分数分别为32.97%33.83%25.24%7.16%Pd质量数为102104105106108110,其丰度百分数分别为1.02%11.14%22.33%27.33%26.46%11.72%Pt选取考察质量数为194195196Pd选取考察质量数为104105106108110Rh无同位素所以选其质量数为103

1.5.2同量异位素

102Ru102Pd104Ru104Pd106Cd106Pd108Cd108Pd110Cd110Pd190Os190Pt192Os192Pt196Hg196Pt198Hg198Pt的测定产生质谱重叠干扰(Rh只有一个同位素且不存在同量异位素干扰)[19]。在测定贵金属含量时,由于每个元素都存在至少一个没有同量异位素质谱重叠干扰的同位素,因此只要选择适当的同位素进行测定,就可以排除同量异位素的质谱重叠干扰。这里只有194Pt195Pt103Pd103Rh是没有同量异位素干扰。

1.5.3半定量扫描

采用ICP-MS对车用金属载体催化转化器待分析溶液进行半定量扫描,测定其中个元素种类含量,确定是否含有相对的干扰元素。

2 结果与讨论

2.1 质量数的选择

经过半定量扫描发现金属载体催化转化器中43Ca53Cr57Fe60Ni90Zr含量较大。比较发现90Zr60Ni178Hf为主要存在干扰元素,综合考虑后决定选取195Pt105Pd103Rh为分析元素的质量数。

2.2 内标的选择

选择内标元素首先要求是样品溶液中不含有的元素,并且与分析元素质量数相接近,电离电位与分析元素相接近。所以选择InTl作为本实验的内标。

2.3 碲共沉淀

碲共沉淀目的都是为了将贵金属提纯或浓缩出来,同时将干扰元素或离子去除,降低其他元素对贵金属元素的干扰。由于碱熔融法中会引入大量Na离子,对于ICP-MS分析影响很大,所以在分析前需要除去,对于金属载体催化转化器,其载体的主要成分为:68%-72%Fe17%-21%Cr3%-5%Ni2%-4%Al,由于是整样溶解,所以样品溶于酸后,溶液中至少含有几十g/LFeCrNiAlNa等基体元素,比待测贵金属元素浓度高出1000多倍,会造成一定的干扰,锥孔也容易堵塞,对分析仪器造成不良影响。所以进行碲共沉淀试验使样品中贵金属元素与基体元素分离。

2.4 过氧化钠加入量的确定

依照1.3.1-1.3.3的方法确定过氧化钠加入量对测定结果回收率的影响结果如图1


过氧化钠加入量对测定结果回收率的影响

Fig.1Effect of the addition of sodium peroxide on recovery ratios of the sample



在熔融温度为800,熔融时间为30min,碲共沉淀添加盐酸量为0mL,碲共沉淀反应时间为30min条件下,得到结果如图1所示,随着加入是样品一定倍数的过氧化钠量的增加,元素PdRh的回收率随倍数增加而提高,在过氧化钠加入量为样品10倍是达到最大,随后随着加入过氧化钠倍数的增加回收率反而降低。元素Pt回收率虽呈现下降趋势,但仍是靠近回收率100%。考虑碱加入过量后,对样品熔融效果不显著,但对坩埚的腐蚀程度增加,使坩埚中不必要的物质混入样品中使测定结果回收率降低。确定过氧化钠加入量为样品10倍为最佳加入量(P<0.05)。

2.5 熔融样品温度的确定

依照1.3.1-1.3.3的方法确定熔融温度对测定结果回收率的影响结果如图2


熔融温度对测定结果回收率的影响

Fig.2Effect of the temperature of alkali fusion on recovery ratios of the sample



在过氧化钠添加量为样品10倍,熔融时间为30min,碲共沉淀添加盐酸量为0mL,碲共沉淀反应时间为30min条件下,得到结果如图2所示,随着熔融温度的增加,元素PtPdRh的回收率随温度增加而提高,在熔融温度为700达到最大,随后随着熔融温度的增加回收率略降低。考虑在700时熔融反应已进行,增加温度对其反应影响不大。确定熔融温度为700为最佳熔融温度(P<0.05)。

2.6 熔融样品时间的确定

依照1.3.1-1.3.3的方法确定熔融时间对测定结果回收率的影响结果如图3


熔融时间对测定结果回收率的影响

Fig.3Effect of the duration of alkali fusion on recovery ratios of the sample



在过氧化钠添加量为样品10倍,熔融温度为700,碲共沉淀添加盐酸量为0mL,碲共沉淀反应时间为30min条件下,得到结果如图3所示,随着熔融时间的增加,元素PtPdRh的回收率随温度增加而提高,但是对于坩埚的随化程度也相应增加。考虑其影响回收率不是特别明显,确定熔融时间为10min为最佳熔融时间(P<0.05)。

2.7 碲沉淀酸度的确定

依照1.3.1-1.3.3的方法确定酸度对测定结果回收率的影响结果如图4


酸度对测定结果回收率的影响

Fig.4Effect of the acidity of tellurium coprecipitate on recovery ratios of thesample



在过氧化钠添加量为样品10倍,熔融温度为700,熔融时间为10min,为调节酸度碲共沉淀添加盐酸量为0mL-40mL,碲共沉淀反应时间为30min条件下,得到结果如图4所示,随着添加盐酸量的增加,元素PtPdRh的回收率随添加盐酸量增加而提高,在添加盐酸量为10mL时达到最大,随后随着添加盐酸量的增加回收率降低。考虑在盐酸浓度为2mol/L-4mol/L时,在有碲化合物存在时,氯化亚锡能够更好的将铂、钯、铑还原与碲一起沉淀。确定盐酸添加量为10mL为最佳盐酸添加量(P<0.05)。

2.8 碲沉淀反应时间的确定

依照1.3.1-1.3.3的方法确定碲沉淀反应时间对测定结果回收率的影响结果如图5


碲沉淀反应时间对测定结果回收率的影响

Fig.5Effect of the duration of tellurium coprecipitate on recovery ratios of thesample



在过氧化钠添加量为样品10倍,熔融温度为700,熔融时间为10min,盐酸添加量为10mL条件下,得到结果如图5所示,随着碲沉淀时间的增加,元素PdRh的回收率随碲沉淀时间增加而提高,在碲沉淀时间为30min时达到最大,随后随着碲沉淀时间的增加回收率降低。元素Pt随着碲沉淀时间的增加没有明显变化。考虑在时间为30min时,碲沉淀已完全,增加碲沉淀时间意义不大。确定碲沉淀时间为30min为最佳碲沉淀时间(P<0.05)。

2.9 正交试验结果及分析

进行单因素实验后,得到过氧化钠加入量、熔融温度、熔融时间、加入盐酸体积和碲沉淀时间5个因素对样品测定结果回收率的影响。选取过氧化钠加入量、熔融温度、加入盐酸体积和碲沉淀时间4个因素设计正交表L934)的正交实验考察多个因素协同作用对样品测定结果回收率的影响。结果见表2-7

表2  L9(34)正交试验方案及结果(Pt)

Table 2  The schemes and results oforthogonal experiment L9(34) for Pt


实验序号

过氧化钠加入量(倍)

熔融温度(

加入盐酸体积(mL

碲沉淀时间(min

回收率(%)

Pt

1

5

600

0

15

96.74

2

5

700

10

30

100.58

3

5

800

20

45

98.97

4

10

600

10

45

100.34

5

10

700

20

15

98.94

6

10

800

0

30

99.16

7

15

600

20

30

100.17

8

15

700

0

45

98.40

9

15

800

10

15

101.57

m1

m11=98.763

m12=99.083

m13=98.100

M14=99.083

m2

m21=99.480

m22=99.307

m23=100.830

m24=99.970

m3

m31=100.047

m32=99.900

m33=99.360

m34=99.237

R

R1=1.284

R2=0.817

R3=2.730

R4=0.887



表3  方差分析表(Pt)

Table 3  Analysis of variance for Pt


因素

偏差平方和

自由度

F

F临界值

显著性

过氧化钠加入量

2.482

2

2.322

9.000

熔融温度

1.069

2

1.000

9.000

加入盐酸体积

11.201

2

10.478

9.000

*

碲沉淀时间

1.347

2

1.260

9.000

误差

1.07

2



从表3方差分析中可以看出加入盐酸体积为显著因素(P=0.1),对照表2正交分析表,得出m23> m33>m13,说明加入盐酸体积的3个水平中,第二个水平最好,即当加入盐酸体积为10mL时,Pt测定结果回收率达最好水平。而过氧化钠加入量、熔融温度和碲沉淀时间并非显著因素。

表4  L9(34)正交试验方案及结果(Pd)

Table 4  The schemes and results of orthogonalexperiment L9(34) for Pd


实验序号

过氧化钠加入量(倍)

熔融温度(

加入盐酸体积(mL

碲沉淀时间(min

回收率(%)

Pd

1

5

600

0

15

92.51

2

5

700

10

30

96.99

3

5

800

20

45

95.42

4

10

600

10

45

97.04

5

10

700

20

15

95.88

6

10

800

0

30

95.57

7

15

600

20

30

95.05

8

15

700

0

45

94.95

9

15

800

10

15

97.68

M1

m11=94.973

m12=94.867

m13=94.343

m14=95.357

M2

m21=96.163

m22=95.940

m23=97.237

m24=95.870

M3

m31=95.893

m32=96.223

m33=95.450

m34=95.803

R

R1=1.190

R2=1.356

R3=2.894

R4=0.513



表5  方差分析表(Pd)

Table 5  Analysis of variance for Pd


因素

偏差平方和

自由度

F

F临界值

显著性

过氧化钠加入量

2.335

2

5.000

19.000

熔融温度

3.073

2

6.580

19.000

加入盐酸体积

12.788

2

27.383

19.000

*

碲沉淀时间

0.467

2

1.000

19.000

误差

0.47

2



从表5方差分析中可以看出加入盐酸体积为显著因素(P=0.05),对照表4正交分析表,得出m23> m33>m13,说明加入盐酸体积的3个水平中,第二个水平最好,即当加入盐酸体积为10mL时,Pd测定结果回收率达最好水平。而过氧化钠加入量、熔融温度和碲沉淀时间并非显著因素。

表6  L9(34)正交试验方案及结果(Rh)

Table 6  The schemes and results of orthogonalexperiment L9(34) for Rh


实验序号

过氧化钠加入量(倍)

熔融温度(

加入盐酸体积(mL

碲沉淀时间(min

回收率(%)

Rh

1

5

600

0

15

90.56

2

5

700

10

30

92.69

3

5

800

20

45

93.43

4

10

600

10

45

94.49

5

10

700

20

15

93.14

6

10

800

0

30

92.24

7

15

600

20

30

93.79

8

15

700

0

45

91.69

9

15

800

10

15

94.83

M1

m11=92.227

m12=92.947

m13=91.497

m14=92.843

M2

m21=93.290

m22=92.507

m23=94.003

m24=92.907

M3

m31=93.437

m32=93.500

m33=93.453

m34=93.203

R

R1=1.210

R2=0.993

R3=2.506

R4=0.360



表7  方差分析表(Rh)

Table 7  Analysis of variance for Rh


因素

偏差平方和

自由度

F

F临界值

显著性

过氧化钠加入量

2.616

2

11.784

19.000

熔融温度

1.486

2

6.694

19.000

加入盐酸体积

10.414

2

46.910

19.000

*

碲沉淀时间

0.222

2

1.000

19.000

误差

0.22

2



从表7方差分析中可以看出加入盐酸体积为显著因素(P=0.05),对照表6正交分析表,得出m23> m33>m13,说明加入盐酸体积的3个水平中,第二个水平最好,即当加入盐酸体积为10mL时,Rh测定结果回收率达最好水平。而过氧化钠加入量、熔融温度和碲沉淀时间并非显著因素。

综合正交试验结果,确定最佳溶解条件为:过氧化钠加入量为样品的15倍、熔融样品温度为800、熔融样品时间为10min、碲沉淀酸度添加盐酸体积为10mL、碲沉淀反应时间为15minPtPdRh的测定结果回收率分别为101.57%97.68%94.83%

根据单因素确定的最佳溶解条件不在正交试验中,所以单独进行验证试验,在溶解条件为:过氧化钠加入量为样品的10倍、熔融样品温度为700、熔融样品时间为10min、碲沉淀酸度添加盐酸体积为10mL、碲沉淀反应时间为30minPtPdRh的测定结果回收率分别为101.46%98.43%95.27%

由于过氧化钠加入量为样品的15倍时,坩埚腐蚀严重,从节约和经济的角度考虑我们选择10倍、70030min

3 结论

车用金属载体的最佳溶解条件确定为:过氧化钠加入量为样品的10倍、熔融样品温度为700、熔融样品时间为10min、碲沉淀酸度添加盐酸体积为10mL、碲沉淀反应时间为30min验证试验表明,PtPdRh的测定结果回收率分别为101.46%98.43%95.27%。综合以上,可发现在本文所选条件下,测定结果回收率与认定值相对偏差均<±5%且更为节能环保,符合当今科技工业发展的需要。
该帖子作者被版主 999youran10积分, 2经验,加分理由:鼓励原创
为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
9999youran
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
夏天的雪
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
冰火女孩
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
fengxueyixiao
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
学校里面学过,但是工作中都没有应用到,看了楼主的文章,才知道正交实验还是很实用,有用的。
rosmarinic
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 fengxueyixiao(fengxueyixiao) 发表:

学校里面学过,但是工作中都没有应用到,看了楼主的文章,才知道正交实验还是很实用,有用的。


我也是在学校学的,实际实验中还算可行,有点说服力。
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴