主题:【分享】力 学 概 述

浏览0 回复36 电梯直达
可能感兴趣
醋老西
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
理性力学是力学中的一门横断的基础学科,它用数学的基本概念和严格的逻辑推理,研究力学中带共性的问题。理性力学一方面用统一的观点,对各传统力学分支进行系统和综合的探讨,另一方面还要建立和发展新的模型、理论,以及解决问题的解析方法和数值方法。

    理性力学的研究特点是强调概念的确切性和数学证明的严格性,并力图用公理体系来演绎力学理论。1945年后,理性力学转向以研究连续介质为主,并发展成为连续统物理学的理论基础。

理性力学的发展简史

    奠基时期  牛顿的《自然哲学的数学原理》一书可看作是理性力学的第一部著作。从牛顿三定律出发可演绎出力学运动的全部主要性质。另一位理性力学先驱是瑞士的雅各布第一·伯努利,他最早从事变形体力学的研究,推导出沿长度受任意载荷的弦的平衡方程。通过实验,他发现弦的伸长和张力并不满足线性的胡克定律,并且认为线性关系不能作为物性的普遍规律。

    法国科学家达朗贝尔于1743年提出:理性力学首先必须象几何学那样建立在显然正确的公理上;其次,力学的结论都应有数学证明。这便是理性力学的框架。

    1788年法国科学家拉格朗日创立了分析力学,其中许多内容是符合达朗贝尔框架的;其后经过相当长的时间,变形体力学的一些基本概念,如应力、应变等逐渐建立起来;1822年法国柯西提出的接触力可用应力矢量表达的“应力原理”,一直是连续介质力学的最基本的假定;1894年芬格建立了超弹性体的有限变形理论;关于有向连续介质的猜想是佛克脱和迪昂提出的,其理论则是由法国科学家科瑟拉兄弟在1909年建立的。

    1900年,著名德国数学家希尔伯特在巴黎国际数学大会上,提出的23个问题中的第6个问题就是关于物理学(特别是力学)的公理化问题。1908年以来,哈茂耳重提此事,但当时只限于一般力学的范围。

    停滞时期  约从20世纪初到1945年。这段时期形成了以从事线性力学及其相关数学的研究为主的局面。线性理论充分发挥了它解释力学现象和解决工程技术问题的能力,并使与之相关的数学也发展到相当完善的地步。相形之下,非线性理论的研究没有多大进展,理性力学也因此处于停滞时期。

    复兴时期  从1945年起,理性力学开始复兴。复兴不是简单的重复,而是达朗贝尔框架在连续介质力学方面的进一步发展。这种变化是由1945年赖纳和1940年里夫林的工作引起的。

    赖纳的工作是研究非线性粘性流体,过去长期不得解决的所谓油漆搅拌器效率不高的问题,因为有了这个非线性粘性流体理论而真相大白。里夫林的工作是在任意形式的贮能函数下,对于等体积变形的不可压缩弹性体,给出了几个简单而又重要问题的精确解,用这个理论解释橡胶制品的特性取得惊人的成功。另外,过去得不到解决的“柱体扭转时为什么会伸长”的问题也自然获得解决。这两个工作揭开了理性力学复兴的序幕。

    奥尔德罗伊德1950年提出本构关系必须具有确定的不变性,这个思想后来就发展成为客观性原理。1953年,特鲁斯德尔提出低弹性体的概念。同年,埃里克森发表了各向同性不可压缩弹性物质中波的传播理论。

    1956年以来,图平关于弹性电介质的系统研究,为电磁连续介质理论的发展打下了基础;1957年托马期关于奇异面的研究是另一重大进展;1957年诺尔首先提出纯力学物质理论的公理化问题。次年,他发表了连续介质的力学行为的数学理论,这便是简单物质的公理体系的雏型,后来逐渐发展成为简单物质谱系。

    1958年埃里克森和特鲁斯德尔提出的杆和壳中应力和应变的准确理论,德国学者金特尔关于科瑟拉连续统的静力学和运动学的论文,引起了对有向物体理论的重新认识和系统研究。1969年科勒曼和诺尔建立了连续介质热力学的一般理论。

    1960年特鲁斯德尔和图平所著《古典场论》,以及1966年特鲁斯德尔和诺尔所著《力学的线性场论》两书,概括了以前有关理性力学的全部主要成果,是理性力学的两部经典著作。这两部书的出版标志着理性力学复兴时期的结束。

    发展时期  1966年以来,理性力学进入发展时期。它的发展是和当代科学技术发展的总趋势相呼应的。这个时期的特点是理性力学本身不断向深度和广度发展,同时又与其他学科相互渗透,相互促进。

    理性力学的发展主要涉及五个方面:公理体系和数学演绎;非线性理论问题及其解析和数值解法;解的存在性和唯一性问题;古典连续介质理论的推广和扩充;以及与其他学科的结合。

理性力学的研究内容

    连续介质力学是研究连续介质的宏观力学行为。连续介质力学用统一的观点来研究固体和流体的力学问题,因此也有人把连续介质力学狭义地理解为理性力学。

    纯力学物质理论主要研究非极性物质的纯力学现象。诺尔提出的纯力学物质理论的公理体系由原始元、基本定律和本构关系三部分组成。1960年科勒曼和诺尔提出减退记忆原理。在这个公理体系下,并给出各类物质的谱系是纯力学物质理论的中心课题。纯力学物质研究得比较充分,尤其是简单物质理论已形成相当完整的体系,这是理性力学中最成功的一部分。

    热力物质理论是用统一的观点和方法,研究连续介质中的力学和热学的耦合作用,1966年以来逐渐形成热力物质理论的公理体系。这个公理体系也是由原始元、基本定律和本构关系三部分组成,但其内容比纯力学物质理论更为广泛。到目前为止还没有一个公认的、完整的热力物质理论,它正在各派学者的争论中发展并不断完善。

    电磁连续介质理论是按连续统的观点研究电磁场与连续介质的相互作用。由于现代科学技术发展的客观需要,电磁连续介质理论的研究越来越受到重视,已成为现代连续介质力学的重要发展方向之一。

    混合物理论是研究由两种以上,包括固体和流体形式物质组成的混合物的有关物理现象。混合物理论可以用来研究扩散现象、多孔介质、化学反应介质等问题。

    连续介质波动理论是研究波在连续介质中传播的一般理论和计算方法。连续介质波动理论把任何以有限速度通过连续介质传播的扰动都看做是“波”,所以研究的内容是相当广泛的。在连续介质波动理论中,奇异面理论占有十分重要的地位,但到目前为止,研究尚少。

    广义连续介质力学是从有向物质点连续介质理论发展起来的连续介质力学。广义连续介质力学包括极性连续介质力学、非局部连续介质力学和非局部极性连续介质力学。极性连续介质力学主要研究微态固体和微态流体,特别是微极弹性固体和微极流体。非局部连续介质力学则主要研究非局部弹性固体和非局部流体。由于非局部极性连续介质力学是极性连续力学和非局部连续介质力学的结合,所以它的主要研究对象是非局部微极弹性固体和非局部微极流体。20世纪70年代以来,广义连续介质力学内容在不断扩充,并已发展成为广义连续统场论。

    非协调连续统理论是研究不满足协调方程的连续统的理论。古典理论要求满足协调方程,但在有位错或内应力存在的物体中,协调方程不再满足,这时对连续位错理论必须引入非协调的概念。这种非协调理论宜用微分几何方法来描述。最近又开展了连续旋错理论的研究,把非协调理论和有向物体理论统一起来是一个研究课题,但还未得到完整的结果。

    相对论性连续介质理论是从相对论观点出发研究连续介质的运动学、动力学、热动力学和电动力学等问题。

    除上述的分支和理论外,理性力学还研究非线性连续介质理论的解析或数值方法以及同其他学科相交叉的问题。

    理性力学来源于传统的分析力学、固体力学、流体力学、热力学和连续介质力学等力学分支,并同这些力学分支结合,出现了理性弹性力学、理性热力学、理性连续介质力学等理性力学的新兴分支。理性力学就是这样从特殊到—般,再从一般到特殊地发展着。理性力学除了同传统的各力学分支互相捉进外,还同数学、物理学以及其他学科密切相关。

醋老西
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。

物理力学的产生

    物理力学作为力学的一个分支,是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。

    在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;

    在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;

    由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。

    在这样的背景条件下,促使了物理力学的建立。物理力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。

    物理力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。

    物理力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。

    物理力学注重运算手段,不满足于问题的原则解决,要求作彻底的数值计算。因此,物理力学的研究力求采用高效率的运算方法和现代化的电子运算工具。

    物理力学注重从微观到宏观。以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而物理力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是物理力学建立的主导思想和根本目的。

    虽然物理力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。物理力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。

物理力学的主要内容

    物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。

    物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。

    物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

    物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。

    近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

醋老西
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
生物力学是应用力学原理和方法对生物体中的力学问题进行定量研究的生物物理学分支。

    生物力学的研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。生物力学的基础是能量守恒、动量定律、质量守恒三定律,并加上描写物性的本构方程。生物力学重点是研究与生理学、医学有关的力学问题。

    生物力学依据研究对象的不同,可细分为生物流体力学、生物固体力学和运动生物力学等。

生物力学的发展简史

    生物力学一词虽然在20世纪60年代才出现,但它所涉及的一些内容,却是古老的课题。例如,1582年前后伽利略得出摆长与周期的定量关系,并利用摆来测定人的脉搏率,用与脉搏合拍的摆长来表达脉搏率等。

    1616年,英国生理学家哈维根据流体力学中的连续性原理,从理论上论证了血液循环的存在;到1661年,马尔皮基在解剖青蛙时,在蛙肺中看到了微循环的存在,证实了哈维的论断;博雷利在《论动物的运动》一书中讨论了鸟飞、鱼游和心脏以及肠的运动;欧拉在1775年写了一篇关于波在动脉中传播的论文;兰姆在1898年预言动脉中存在高频波,现已得到证实;材料力学中著名的扬氏模量就是英国物理学家托马斯·扬为建立声带发音的弹性力学理论而提出的。

    1733年,英国生理学家黑尔斯测量了马的动脉血压,并寻求血压与失血的关系,解释了心脏泵出的间歇流如何转化成血管中的连续流,并他在血液流动中引进了外周阻力概念,并正确指出:产生这种阻力的主要部位在细血管处。其后泊肃叶确立了血液流动过程中压降、流量和阻力的关系;夫兰克解释了心脏的力学问题;斯塔林提出了透过膜的传质定律,并解释了人体中水的平衡问题。

    克罗格由于在微循环力学方面的贡献获得1920年诺贝尔奖金。希尔因肌肉力学的工作获得1922年诺贝尔奖金。他们的工作为60年代开始的生物力学的系统研究打下基础。

    到了20世纪60年代,一批工程科学家同生理学家合作,对生物学、生理学和医学的有关问题,用工程的观点和方法,进行了较为深入的研究,使生物力学逐渐成为了一门独立的学科。其中有些课题的研究也逐渐发展成为生物力学的分支学科,如以研究生物材料的力学性能为主要内容的生物流变学等。

    中国的生物力学研究,有相当一部分与中国传统医学结合,因而在骨骼力学、脉搏波、无损检测、推拿、气功、生物软组织等项目的研究中已形成自己的特色。

生物力学的研究内容

    生物的各个系统,特别是循环系统和呼吸系统的动力学问题,是人们长期研究的对象。循环系统动力学主要研究血液在心脏、动脉、微血管、静脉中流动,以及心脏、心瓣的力学问题。呼吸系统动力学主要研究在呼吸过程中,气道内气体的流动和肺循环中血液的流动,以及气血间气体的交换。

    所有这些工作,包括生物材料的流变性质和动力学的研究,不仅有助于对人体生理、病理过程的了解,而且还能为人工脏器的设计和制造提供科学依据。生物力学还研究植物体液的输运。

    环境对生理的影响也是生物力学的一个研究内容。众所周知,氧对生物体的发育有很大影响,在缺氧环境下生物体发育较慢,在富氧环境下发育较快。即使在短期内,环境的影响也是明显的。实验表明:在含10%的氧气、压力为一个大气压的环境中的幼鼠,即使只生活24小时,在直径为15~30微米的肺小动脉壁下,也会出现大量的纤维细胞。若延续4~7天,纤维细胞则会过渡为典型的平滑肌细胞,这无疑会影响肺循环中血液的流动。又如处于高加速度状态中的人,其血液的惯性会有明显的改变,悬垂器官会偏离原位,从而改变体内血液的流动状态。

    在设计水中航行的工具时,经常需要考虑最佳外形、最佳推进方式和最佳操纵方式。由于自然选择,具有这些优点的水生物较易生存下来。因此,研究某些水生物的运动可以得到一些值得借鉴的知识。

    例如,海豚是一种较高级的动物,它具有高效率的推进机制和很好的外形,特别是它的皮肤,分为两层,其间充满了弹性纤维和脂肪组织,具有特殊的减阻特性,在高速游动时能够保持层流边界层状态,这是因为它的皮肤对边界层中压力梯度变化十分敏感,能作适当的弹性变形以降低逆压梯度,因而在高速游动时,表皮能产生波状运动以抑制端流的出现。又如纤毛虫的运动是通过纤毛的特殊运动实现的,在人的呼吸道内也保持有这种低级生物的运动方式,即利用纤毛排除呼吸道内的某些异物。总之,研究大自然中生物运动的意义是很明显的。

    人体各器官、系统,特别是心脏-循环系统和肺脏-呼吸系统的动力学问题、生物系统和环境之间的热力学平衡问题、特异功能问题等也是当前研究的热点。生物力学的研究,不仅涉及医学、体育运动方面,而且已深入交通安全、宇航、军事科学的有关方面。

    生物固体力学是利用材料力学、弹塑性理论、断裂力学的基本理论和方法,研究生物组织和器官中与之相关的力学问题。

    在近似分析中,人与动物骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学、应力套方法和先测弹力法等检测技术都已应用于骨力学研究。

    骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物。骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高,体现了骨以最少的结构材料来承受最大外力的功能适应性。

    木材和昆虫表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由多糖、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。

    生物流体力学是研究生物心血管系统、消化呼吸系统、泌尿系统、内分泌以及游泳、飞行等与水动力学、空气动力学、边界层理论和流变学有关的力学问题。它一般将生物材料分为体液、硬组织和软组织,肌肉则属较为特殊的一类。

    体液中以血液为研究的重点,主要研究血液的粘性和影响粘性的因素(如管径、有形成分和红细胞),以及流动中红细胞在管系支管中的比积分配问题,红细胞本身的力学性质,红细胞之间的相互作用,红细胞与管壁的作用等。人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、湍流、渗流和两相流等流动型式相近。

    在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于微血管直径与红细胞直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。

    人体内血液的流动大都属于层流,在血液流动很快或血管很粗的部位容易产生湍流。在主动脉中,以峰值速度运动的血液勉强处于层流状态,但在许多情况下会转变成湍流。尿道中的尿流往往是湍流;而通过毛细血管壁的物质交换则是一种渗流。对于血液流动这样的内流,因心脏的搏动血液流动具有波动性,又因血管富有弹性故流动边界呈不固定型。因此,体内血液的流动状态是比较复杂的。

    对于软组织,则以研究它的流变性质,建立本构关系为主,因为本构关系不单是进一步分析它的力学问题的基础,而且具有临床意义。对于硬组织,除了研究它的流变性质外,对骨骼的消长与应力的关系也进行了大量研究。

    流体力学的知识也用于动物游泳的研究。如鱼的体型呈流线型,且易挠曲,可通过兴波自我推进。水洞实验表明,在鱼游动时的流体边界层内,速度梯度很大,因而克服流体的粘性阻力的功率也大。

    小生物和单细胞的游动,也是外流问题。鞭毛的波动和纤毛的拍打推动细胞表面的流体,使细胞向前运动。精子用鞭毛游动,水的惯性可以忽略,其水动力正比于精子的相对游动速度。原生动物在液体中运动,其所受阻力可以根据计算流场中小颗粒的阻力公式(斯托克斯定律)得出。

    此外,空气动力学的原理与方法常用来研究动物的飞行。飞机和飞行动物飞行功率由两部分组成:零升力功率和诱导功率。前者用来克服边界层内的空气粘性阻力;后者用来向下加速空气,以提供大小等于飞机或飞行动物重量的升力。鸟在空中可以通过前后拍翅来调节滑翔角度,这与滑翔机襟翼调节的作用一样。风洞已用于研究飞行动物的飞行特性,如秃鹫、蝙蝠的滑行性能与模型滑翔机非常相似。

    运动生物力学是用静力学、运动学和动力学的基本原理结合解剖学、生理学等研究人体运动的学科。用理论力学的原理和方法研究生物是个开展得比较早、比较深入的领域。

    在运动生物力学的研究中,首先要建立人体力学模型,通常把人设想为由有限个以球铰联结的链系统。因为人体各
赞贴
0
收藏
0
拍砖
0
Last edit by wangxy2999
醋老西
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
天体力学是天文学和力学之间的交叉学科,是天文学中较早形成的一个分支学科,它主要应用力学规律来研究天体的运动和形状。

    天体力学以往所涉及的天体主要是太阳系内的天体,20世纪50年代以后也开始研究人造天体和一些成员不多(几个到几百个)的恒星系统。天体的力学运动是指天体质量中心在空间轨道的移动和绕质量中心的转动(自转)。对日月和行星则是要确定它们的轨道,编制星历表,计算质量并根据它们的自传确定天体的形状等等。

    天体力学以数学为主要研究手段,至于天体的形状,主要是根据流体或弹性体在内部引力和自转离心力作用下的平衡形状及其变化规律进行研究。天体内部和天体相互之间的万有引力是决定天体运动和形状的主要因素,天体力学目前仍以万有引力定律为基础。

    虽然已发现万有引力定律与某些观测事实有矛盾(如水星近日点进动问题),而用爱因斯坦的广义相对论却能对这些事实作出更好的解释,但对天体力学的绝大多数课题来说,相对论效应并不明显。因此,在天体力学中只是对于某些特殊问题才需要应用广义相对论和其他引力理论。

天体力学的发展历史

    远在公元前一、二千年,中国和其他文明古国就开始用太阳、月亮和大行星等天体的视运动来确定年、月和季节,为农业服务。随着观测精度的不断提高,观测资料的不断积累,人们开始研究这些天体的真运动,从而预报它们未来的位置和天象,更好地为农业、航海事业等服务。

    历史上出现过各种太阳、月球和大行星运动的假说,但直到1543年哥白尼提出日心体系后,才有反映太阳系的真运动的模型。

    开普勒根据第谷多年的行星观测资料,于1609~1619年间,提出了著名的行星运动三大定律,深刻地描述了行星运动,至今仍有重要作用。开普勒还提出著名的开普勒方程,对行星轨道要素下了定义。由此人们就可以预报行星(以及月球)更准确的位置,从而形成了理论天文学,这是天体力学的前身。

    到这时,人们对天体(指太阳、月球和大行星)的真运动还仅处于描述阶段,还未能深究行星运动的力学原因。

    早在中世纪末期,达·芬奇就提出了不少力学概念,人们开始认识到力的作用。伽利略在力学方面作出了巨大的贡献,使动力学初具雏形,为牛顿三定律的发现奠定了基础。

    牛顿根据前人在力学、数学和天文学方面的成就,以及他自己二十多年的反复研究,在1687年出版的《自然哲学的数学原理》中提出了万有引力定律。他在书中还提出了著名的牛顿三大运动定律,把人们带进了动力学范畴。对天体的运动和形状的研究从此进入新的历史阶段,天体力学正式诞生。虽然牛顿未提出这个名称,仍用理论天文学表示这个领域,但牛顿实际上是天体力学的创始人。

    天体力学诞生以来的近三百年历史中,按研究对象和基本研究方法的发展过程,大致可划分为三个时期:

    奠基时期  自天体力学创立到十九世纪后期,是天体力学的奠基过程。天体力学在这个过程中逐步形成了自己的学科体系,称为经典天体力学。它的研究对象主要是大行星和月球,研究方法主要是经典分析方法,也就是摄动理论。牛顿和莱布尼茨既是天体力学的奠基者,同时也是近代数学和力学的奠基者,他们共同创立的微积分学,成为天体力学的数学基础。

    十八世纪,由于航海事业的发展,需要更精确的月球和亮行星的位置表,于是数学家们致力于天体运动的研究,从而创立了分析力学,这就是天体力学的力学基础。这方面的主要奠基者有欧拉、达朗贝尔和拉格朗日等。其中,欧拉是第一个较完整的月球运动理论的创立者,拉格朗日是大行星运动理论的创始人。后来由拉普拉斯集其大成,他的五卷十六册巨著《天体力学》成为经典天体力学的代表作。他在1799年出版的第一卷中,首先提出了天体力学的学科名称,并描述了这个学科的研究领域。

    在这部著作中,拉普拉斯对大行星和月球的运动都提出了较完整的理论,而且对周期彗星和木星的卫星也提出了相应的运动理论。同时,他还对天体形状的理论基础——流体自转时的平衡形状理论作了详细论述。

    后来,勒让德、泊松、雅可比和汉密尔顿等人又进一步发展了有关的理论。1846年,根据勒威耶和亚当斯的计算,发现了海王星,这是经典天体力学的伟大成果,也是自然科学理论预见性的重要验证。此后,大行星和月球运动理论益臻完善,成为编算天文年历中各天体历表的根据。

    发展时期  自十九世纪后期到二十世纪五十年代,是天体力学的发展时期。在研究对象方面,增加了太阳系内大量的小天体(小行星、彗星和卫星等);在研究方法方面,除了继续改进分析方法外,增加了定性方法和数值方法,但它们只作为分析方法的补充。这段时期可以称为近代天体力学时期。彭加莱在1892~1899年出版的三卷本《天体力学的新方法》是这个时期的代表作。

    虽然早在1801年就发现了第一号小行星(谷神星),填补了火星和木星轨道之间的空隙。但小行星的大量发现,是在十九世纪后半叶照相方法被广泛应用到天文观测以后的事情。与此同时,彗星和卫星也被大量发现。这些小天体的轨道偏心率和倾角都较大,用行星或月球的运动理论不能得到较好结果。天体力学家们探索了一些不同于经典天体力学的方法,其中德洛内、希尔和汉森等人的分析方法,对以后的发展影响较大。

    定性方法是由彭加莱和李亚普诺夫创立的,他们同时还建立了微分方程定性理论。但到二十世纪五十年代为止,这方面进展不快。

    数值方法最早可追溯到高斯的工作方法。十九世纪末形成的科威耳方法和亚当斯方法,至今仍为天体力学的基本数值方法,但在电子计算机出现以前,应用不广。

    新时期  二十世纪五十年代以后,由于人造天体的出现和电子计算机的广泛应用,天体力学进入一个新时期。研究对象又增加了各种类型的人造天体,以及成员不多的恒星系统。

    在研究方法中,数值方法有迅速的发展,不仅用于解决实际问题,而且还同定性方法和分析方法结合起来,进行各种理论问题的研究。定性方法和分析方法也有相应发展,以适应观测精度日益提高的要求。

天体力学的研究内容

    当前天体力学可分为六个次级学科:

    摄动理论  这是经典天体力学的主要内容,它是用分析方法研究各类天体的受摄运动,求出它们的坐标或轨道要素的近似摄动值。

    近年,由于无线电、激光等新观测技术的应用,观测精度日益提高,观测资料数量陡增。因此,原有各类天体的运动理论急需更新。其课题有两类:一类是具体天体的摄动理论,如月球的运动理论、大行星的运动理论等;另一类是共同性的问题,即各类天体的摄动理论都要解决的关键性问题或共同性的研究方法,如摄动函数的展开问题、中间轨道和变换理论等。

    数值方法  这是研究天体力学中运动方程的数值解法。主要课题是研究和改进现有的各种计算方法,研究误差的积累和传播,方法的收敛性、稳定性和计算的程序系统等。近年来,电子计算技术的迅速发展为数值方法开辟了广阔的前景。六十年代末期出现的机器推导公式,是数值方法和分析方法的结合,现已被广泛使用。

    以上两个次级学科都属于定量方法,由于存在展开式收敛性以及误差累计的问题,现有各种方法还只能用来研究天体在短时间内的运动状况。

    定性理论也叫作定性方法。它并不具体求出天体的轨道,而是探讨这些轨道应有的性质,这对那些用定量方法还不能解决的天体运动和形状问题尤为重要。其中课题大致可分为三类:一类是研究天体的特殊轨道的存在性和稳定性,如周期解理论、卡姆理论等;一类是研究运动方程奇点附近的运动特性,如碰撞问题、俘获理论等;另一类是研究运动的全局图像,如运动区域、太阳系稳定性问题等。近年来,在定性理论中应用拓扑学较多,有些文献中把它叫作拓扑方法。

    天文动力学又叫作星际航行动力学。这是天体力学和星际航行学之间的边缘学科,研究星际航行中的动力学问题。在天体力学中的课题主要是人造地球卫星,月球火箭以及各种行星际探测器的运动理论等。

    历史天文学是利用摄动理论和数值方法建立各种天体历表,研究天文常数系统以及计算各种天象。

    天体形状和自转理论是牛顿开创的次级学科,主要研究各种物态的天体在自转时的平衡形状、稳定性以及自转轴的变化规律。近年来,利用空间探测技术得到了地球、月球和几个大行星的形状以及引力场方面大量数据,为进一步建立这些天体的形状和自转理论提供了丰富资料。

    天体力学的发展同数学、力学、地学、星际航行学,以及天文学的其他分支学科都有相互联系。如天体力学定性理论与拓扑学、微分方程定性理论紧密联系;多体问题也是一般力学问题;天文动力学也是星际航行学的分支;引力理论、小恒星系的运动等是与天体物理学的共同问题;动力演化是与天体演化学的共同问题,以及地球自转理论是与天体测量学的共同问题等等。

赞贴
0
收藏
0
拍砖
0
Last edit by wangxy2999
醋老西
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
计算力学是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题的一门新兴学科。它横贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。

计算力学的发展简史

    近代力学的基本理论和基本方程在19世纪末20世纪初已基本完备了,后来的力学家大多致力于寻求各种具体问题的解。但由于许多力学问题相当复杂,很难获得解析解,用数值方法求解也遇到计算工作量过于庞大的困难。通常只能通过各种假设把问题简化到可以处理的程度,以得到某种近似的解答,或是借助于实验手段来谋求问题的解决。

    第二次世界大战后不久,第一台电子计算机在美国出现,并在以后的20年里得到了迅速的发展。20世纪60年代出现了大型通用数字电子计算机,这种强大的计算工具的出现使复杂的数字运算不再成为障碍,为计算力学的形成奠定了物质基础。

    与此同时,适用于计算机的各种数值方法,如矩阵运算、线性代数、数学规划等也得到相应的发展;椭圆型、抛物型和双曲型微分方程的差分格式和稳定性理论研究也相继取得进展。

    1960年,美国克拉夫首先提出了有限元法,为把连续体力学问题化作离散的力学模型开拓了宽广的途径。有限元法的物理实质是:把一个连续体近似地用有限个在节点处相连接的单元组成的组合体来代替,从而把连续体的分析转化为单元分析加上对这些单元组合的分析问题。

    有限元法和计算机的结合,产生了巨大的威力,应用范围很快从简单的杆、板结构推广到复杂的空间组合结构,使过去不可能进行的一些大型复杂结构的静力分析变成了常规的计算,固体力学中的动力问题和各种非线性问题也有了各种相应的解决途径。

    另一种有效的计算方法——有限差分方法也差不多同时在流体力学领域内得到新的发展,有代表性的工作是美国哈洛等人提出的一套计算方法,尤其是其中的质点网格法(即PIC方法)。这些方法往往来源于对实际问题所作的物理观察与考虑,然后再采用计算机作数值模拟,而不讲究数学上的严格论证。1963年哈洛和弗罗姆成功地用电子计算机解决了流体力学中有名的难题——卡门涡街的数值模拟。

    无论是有限元法还是有限差分方法,它们的离散化概念都具有非常直观的意义,很容易被工程师们接受,而且在数学上又都有便于计算机处理的计算格式。计算力学就是在高速计算机产生的基础上,随着这些新的概念和方法的出现而形成的。

计算力学的研究内容

    计算力学的应用范围已扩大到固体力学、岩土力学、水力学、流体力学、生物力学等领域。

    计算力学主要进行数值方法的研究,如对有限差分方法、有限元法作进一步深入研究,对一些新的方法及基础理论问题进行探索等等。

    计算结构力学是研究结构力学中的结构分析和结构综合问题。结构分析指在一定外界因素作用下分析结构的反应,包括应力、变形、频率、极限承载能力等。结构综合指在一定约束条件下,综合各种因素进行结构优化设计,例如寻求最经济、最轻或刚度最大的设计方案。

    计算流体力学主要研究流体力学中的无粘绕流和粘性流动。无粘绕流包括低速流、跨声速流、超声速流等;粘性流动包括端流、边界层流动等。

    计算力学已在应用中逐步形成自己的理论和方法。有限元法和有限差分方法是比较有代表性的方法,这两种方法各有自己的特点和适用范围。有限元法主要应用于固体力学,有限差分方法则主要应用于流体力学。近年来这种状况已发生变化,它们正在互相交叉和渗透,特别是有限元法在流体力学中的应用日趋广泛。

    用计算力学求解各种力学问题,一般有下列几个步骤:用工程和力学的概念和理论建立计算模型;用数学知识寻求最恰当的数值计算方法;编制计算程序进行数值计算,在计算机上求出答案;运用工程和力学的概念判断和解释所得结果和意义,作出科学结论。

    计算力学对于各种力学问题的适应性强,应用范围广。它能详细给出各种数值结果;通过图像显示还可以形象地描述力学过程。它能多次重复进行数值模拟,比实验省时省钱。但计算力学也有弱点,例如,它不能给出函数形式的解析表达式,因此比较难以显示数值解的规律性。许多非线性问题由于解的存在和唯一性缺乏严格证明,数值计算结果须作一些验证。

计算力学和其他学科的关系

    计算力学横贯各个力学分支,为它们服务,促进它们的发展,同时也受它们的影响。计算力学曾揭示出一些前所未知的物理现象,如两个非线性孤立波在相遇和干扰后仍能保持原有的振幅和波形,就是首先从数值计算中发现,以后才由实验证实的。计算力学也推动了变分方法等基本力学方法和计算方法的研究。计算力学对力学实验提出了更高的要求,促进了实验的发展。在计算力学帮助下,对实验过程中测点的最佳位置、测量最佳时刻的确定有了更可靠的理论指导。

    计算力学也为实际工程项目开辟了优化设计的前景。过去,工程师们虽有追求最优化设计的愿望,但是力不从心;现在,由于有了强有力的结构分析方法和工具,便有条件研究改进设计的科学方法,逐步形成计算力学的一个重要分支——结构优化设计。计算力学在应用中也提出了不少理论问题,如稳定性分析、误差估计、收敛性等,吸引许多数学家去研究,从而推动了数值分析理论的发展。

skysnow520
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
haypiny
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
xielena
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
没事上上网
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
看的我冒星星,,我是学物理的,,以前看到过..做个附件来就好了..
tangldy
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 wjpd2508 发表:
看的我冒星星,,我是学物理的,,以前看到过..做个附件来就好了..

深有同感。简单加工了一个全文的。

力学概述
附件:
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴