电感耦合等离子体原子发射光谱法
测定硅铝丝中中的硅、铁、铜、锰、镁、锌、钛
姜玉领
中原内配集团股份有限公司 河南焦作 454750
Determinationof silicon, iron, copper, manganese, magnesium, zinc and titanium in siliconaluminum wire by inductively coupled plasma atomic emission spectrometry(ICP-AES)
JIANGYuling
Zhongyuaninternal combustion engine parts group Limited by Share Ltd . Jiaozuo454750
Abstract: using the solution of sodium hydroxideand hydrogen peroxide and neutralization by hydrochloric acid, the elements ofsilicon, iron, copper, manganese, zinc, titanium and magnesium in aluminumsilicon wire are determined by inductively coupled plasma spectrometry. The correlation coefficientsof all elements are greater than 0.999, and the detection limit of each elementin the method is 0.6-20.5μ g/g. The experimentalmethod is used to determine silicon, iron, copper, manganese, zinc, titaniumand magnesium in the sample, and the relative standard deviation (RSD, n=10) isbetween 0.24%-4.0% and the recovery rate of each element is between 95%-107%.According to the experimental method, the results of the determination ofsilicon, iron, copper, manganese, zinc, titanium and magnesium in the sampleswere determined by spectrophotometry.
铝硅丝是以一种新型的热喷涂材料,可用作物品上热喷涂一层涂层,特别是在乘用车发动机的气缸套上喷涂一层铝层,在浇铸机体时结合更好,可以较少不同材质产生的气孔和裂纹缝隙等缺陷;同时硅铝丝也可作为钎焊材料。分析铝及其合金通常采用比色法【2,3,5】,原子吸收法【1,4,6】等,由于以上方法分析过程繁琐、时间长,而且每次分析元素的个数有限,近些年来由于ICP的推广,使用ICP分析铝合金中的杂质元素时有报道【7-9】。本法对硅铝丝中的硅、铁、铜、锰、锌、钛、镁等元素进行分析,具有线性范围宽,检出限低,精密度高,基体效应小,多元素同时分析等特点。本文采用氢氧化钠溶液溶样,使用电感耦合等离子体原子发射光谱法测定了硅铝丝中硅和其他几种杂质元素,其精密度和准确度均能够符合要求。
1、实验部分
1.1 试剂
氢氧化钠溶液:20%;过氧化氢:30%;盐酸溶液:1+1;铝、硅、铜、铁、锰、镁、锌、钛标准储备溶液(北京钢铁材料测试中心):1.000 mg/L;用以上标准储备溶液配制铜、铁、锰标准溶液:100μg/mL,镁、锌、钛标准溶液:10μg/mL。
试验用水为二次净化水,电导率0.04μs/m。氩气纯度不小于99.999%
1.2 主要仪器及工作条件
PerkinElmer Optima 8000电感耦合等离子体原子发射光谱仪(美国PE公司),等离子体功率1300W,等离子体气流量10L/min,辅助气流量0.2L/min,雾化器气流量0.55L/min,观测距离15.0mm,蠕动泵转速50r/min。
1.3 试验方法
1.3.1、样品处理
准确称取0.1g,试样秤准至0.0001g,置于聚四氟乙烯烧杯中,加10ml20%氢氧化钠溶液,低温溶解,加几滴过氧化氢溶液至溶液变清,再加入25mL1+1盐酸中和过量的氢氧化钠,加热5分钟,冷却,移入到100ml容量瓶中,稀释至刻度,待测。随同试样做空白试验。
1.3.2、标准溶液系列的配制
分别称取0.1g纯铝标样,准至0.0001g,按样品处理方法进行处理,最后移入100ml容量瓶中,分别加入不同体积的硅标准铌储备液、铜、铁、镁、锰、锌、钛标准溶液,制备标准溶液系列。标准溶液系列中各元素质量浓度相当于样品中各元素的质量分数,见表1
表1 标准溶液系列中各元素的质量分数 | ||||||
ω/% | ||||||
元素 | 空白 | 标准1 | 标准2 | 标准3 | 标准4 | 标准5 |
Si | 0 | 2.50 | 5.00 | 10.00 | 12.50 | 15.00 |
Fe | 0 | 0.10 | 0.30 | 0.50 | 0.70 | 1.00 |
Cu | 0 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 |
Mn | 0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.30 |
Mg | 0 | 0.01 | 0.03 | 0.05 | 0.07 | 0.10 |
Zn | 0 | 0.01 | 0.03 | 0.05 | 0.07 | 0.10 |
Ti | 0 | 0.01 | 0.03 | 0.05 | 0.07 | 0.10 |
表2 线性关系及检出限 | ||||
元素 | 线性回归方程 | 相关系数 | 测量范围 (%) | 检出限 (μg/g) |
Si 251.611 | y=28040x+27936.6 | 0.9997 | 2.5-15.0 | 20.5 |
Fe 239.562 | y=20290x+1235.7 | 0.9995 | 0.1-1.0 | 5.2 |
Cu 324.752 | y=271100x-3263.9 | 0.9999 | 0.1-0.5 | 2 |
Mn 259.372 | y=119500x+3730.1 | 0.9998 | 0.05-0.3 | 4.8 |
Mg 279.077 | y=102900x+787.0 | 0.9998 | 0.01-0.1 | 0.8 |
Zn 202.548 | y=5766x-169.5 | 0.9997 | 0.01-0.1 | 0.6 |
Ti 334.940 | y=45820x+2427.0 | 0.9995 | 0.01-0.1 | 1.8 |
2.5、方法精密度
按实验方法测定一组样品中硅、铜、铁、镁、锰、锌、钛,平行测定6次,并进行加标回收试验,测定结果及相对标准偏差(RSD)和回收率见表3
表3 硅铝丝测定结果及回收试验(n=6) | |||||||
元素 | 测定值 (ω/%) | 平均值 (ω/%) | RSD (%) | 加标量 (ω/%) | 测得总量 (ω/%) | 回收率(%) | |
Si | 11.42,11.50,11.46 11.48,11.50,11.48 | 11.47 | 0.24 | 1.00 | 12.45 | 97.67 | |
Fe | 0.205,0.210,0.208 0.196,0.209,0.198 | 0.205 | 2.25 | 0.100 | 0.3 | 95.00 | |
Cu | 0.099,0.098,0.099 0.101,0.099,0.098 | 0.0998 | 1.68 | 0.05 | 0.151 | 102.33 | |
Mn | 0.011,0.012,0.012 0.011,0.013,0.012 | 0.0117 | 4.04 | 0.05 | 0.0615 | 99.67 | |
Mg | 0.0023,0.0023,0.0024 0.0023,0.0025,0.0023 | 0.0024 | 3.25 | 0.01 | 0.013 | 106.50 | |
Zn | 0.0078,0.0078,0.0079 0.0079,0.0078,0.0078 | 0.0078 | 0.60 | 0.01 | 0.018 | 101.67 | |
Ti | 0.015,0.016,0.016 0.016,0.015,0.016 | 0.0157 | 3.01 | 0.02 | 0.0365 | 104.17 |
表4 准确度试验结果 | ||
元素 | 实验方法测定值wt% | 分光光度法测定值wt% |
Si | 12.05 | 12.06 |
Fe | 0.204 | 0.0200 |
Cu | 0.103 | 0.110 |
Mn | 0.025 | 0.026 |
Mg | 0.0028 | 0.0026 |
Zn | 0.0080 | 0.0082 |
Ti | 0.135 | 0.137 |