主题:【转帖】超声波化学镀的研究进展

浏览0 回复19 电梯直达
可能感兴趣
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
在获得热力学判据证明化学镀镍可行的基础上,几十年来人们不断探索化学镀镍的动力学过程,提出各种沉积机理、假说,以期解释化学镀镍过程中出现的许多现象,希望推动化学镀镍技术的发展和应用。虽然化学镀镍的配方、工艺千差万别,但它们都具备以下几个共同点:

  沉积 Ni 的同时伴随着着 H2 析出
  镀层中除 Ni 外,还含有与还原剂有关的 P 、 B 或 N 等元素
  还原反应只发生在某些具有催化活性的金属表面上,但一定会在已经沉积的镀层上继续沉积
  产生的副产物 H+ 促使槽液 pH 值降低
  还原剂的利用率小于 100%
  无论什么反应机理都必须对上面的现象作出合理的解释,尤其是化学镀镍一定在具有自催化的特定表面上进行,机理研究应该为化学镀提供这样一种催化表面。

  元素周期表中第 VIII 族元素表面几乎都具有催化活性,如 Ni 、 Co 、 Fe 、 Pd 、 Rh 等金属的催化活性表现为是脱氢和氢化作用的催化剂。在这些金属表面上可以直接化学镀镍。有些金属本身虽不具备催化活性,但由于它的电位比镍负,在含镍离子的溶液中可以发生置换反应构成具有催化作用的 Ni 表面,使沉积反应能够继续下去,如 Zn 、 Al 。对于电位比镍正又不具备催化活性的金属表面,如 Cu 、 Ag 、 Au 、铜合金、不锈钢等,除了可以用先闪镀一层薄薄的镍层的方法外,还可用“诱发”反应的方法活化,即在镀液中用一活化的铁或镍片接触已清洁活化过的工件表面,瞬间就在工件表面上沉积出 Ni 层,取出 Ni 或 Fe 片后,镍的沉积反应会仍然继续下去。

  化学镀的催化作用属于多相催化,反应是在固相催化剂表面上进行。不同材质表面的催化能力不同,因为它们存在的催化活性中心数量不同,而催化作用正是靠这些活性中心吸附反应物分子增加反应激活能而加速反应进行的。在实际化学镀中工件的催化活性大小与工艺密切相关。人们也不难发现一些并不具备催化活性的表面,如不锈钢、搪瓷、清漆、塑料、玻璃钢等在长期施、机械磨擦、局部温度或 pH 值过高,或还原剂浓度过高等条件下,由它们制成的容器壁、挂钩上也会显示出催化活性而沉积上镍,温度高的地区更加明显。

  在工件表面化学镀镍,以次磷酸钠作还原剂在酸性介质中反应式为:

Ni2++H2PO-+H2O → H2PO3-+Ni+2H+

  它必然有几个基本步骤:

  反应物向表面扩散;
  反就硪在催化表面上吸附;
  在催化表面上发生化学反应;
  产物从表面层脱附;
  产物扩散离开表面
  这些步骤中按化学动力学基本原理,最慢的步骤是整个沉积反应的控制步骤。

   目前,化学镀 Ni-P 合金有四种沉积机理,即原子氢理论、氢化物传输理论、电化学理论及羟基 - 镍离子配位理论。
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
如同其他湿法表面处理一样,化学镀镍包括镀前处理、施镀操作、镀后处理各部分工艺序列组成,正确地实施工艺全过程才能获得质量合格的镀层。然而,与电镀工艺比较,化学镀镍工艺全过程应格外仔细。化学镀取决于在工件表面均匀一致的、迅速成的初始状态(起镀过程),化学镀镍并无外力启动和帮助克服任何表面缺陷;于是,工件一进入镀液即形成均匀一致的沉积界面,这一点很生要,因为化学镀是靠表面条件启动的,即异相表面自催化反应,而不是电力。一秀说来,化学镀镍液比较电镀液更加敏感娇弱。其中各项化学成份的平衡、工艺参数的可操作范围比较狭窄;对于污染物的耐受能力较差,甚至ppm级的重金属离子就可能造成镀层性能恶化或漏镀、停镀;考虑到化学镀液的寿命,比较电镀液而言,十分有限,需要给予更多的维护,尽可能延长化学镀液寿命是十分重要的。
  化学镀镍层具有优越的耐腐蚀的是它得到应用的主要原因之一。这种镀层是依靠完全的连续要覆盖而防止基体腐蚀的,并非像锌等金属镀层那样属于牺牲性镀层;因此,化学镀镍层必须是完整的;仔细的表面预处理、谨慎的施镀操作是这种镀层完整性的保证。
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
密度:
  镍的密度在20℃时为8.91g/cm3。含磷量1%-4%时为8.5 g/cm3;含磷量7%-9%时为8.1 g/cm3;含磷量10%-12%时为7.9 g/cm3。镀层密度变化的原因不完全是溶质原子质量的不同,还与合金化时点阵参数发生变化有关。
热学性质:
  热膨胀系数是用来表示金属尺寸随温度的变化规律,一般是指线膨胀系数μm/m/℃。化学镀Ni-P(8%-9%)的热膨胀系数在0—100℃内为13μm/m/℃。电镀镍相应值为12.3-13.6μm/m/℃。热传导系数可以从电导率计算。化学镀镍的热导率比电镀镍低,在4.396~5.652W/(m·K)范围。
  电学性质:
  由于镀层是很薄的一层金属,测定比电阻困难。Ni-P(6%-7%)比电阻为52-68μΩ·cm,碱浴镀层只有28-34μΩ·cm,纯镍镀层的比电阻小,仅为6.05μΩ·cm。镀层比电阻的大小与镀浴的组成、温度、pH值,尤其是磷含关系密切。另外热处理也明显影响着比电阻值的大小。
磁学性质:
  化学镀Ni-P合金的磁性能决定于磷含量和热处理制度,也就是其结构属性——晶态或者非晶态。P≥8%(wt)的非晶态镀层是非磁性的,含5%-6%P的镀层有很弱的铁磁性,只有P≤3%(wt)的镀层才具有铁磁性,但磁性仍比电镀镍小。
  钎焊性能:
  化学镀镍层拥有良好的钎焊性能,如在铝合金制品上镀7~8um镍磷镀层就可以改善钎焊性能,使铝散热品与硅晶体管连接良好。
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
为了保证化学镀镍的质量,必须始终保持镀浴的化学成分、工艺技术参数在最佳范围(状态),这就要求操作者经常进行镀液化学成分的分析与调整。
1.Ni2+浓度
  镀液中镍离子浓度常规测定方法是用EDTA络合滴定,紫脲酸胺为指示剂。
试剂
(1)浓氨水(密度:0.91g/ml)。
(2)紫脲酸胺指示剂(紫脲酸胺:氯化钠=1:100)。
(3)EDTA容液 0.05mol,按常规标定。
  分析方法:
用移液管取出10ml冷却后的化学镀镍液于250ml的锥形瓶中,并加入100ml蒸馏水、15ml浓氨水、约0.2g指示剂,用标定后的EDTA溶液滴定,当溶液颜色由浅棕色变至紫色即为终点。
镍含量的计算:
C Ni2+ = 5.87 M·V (g/L)
式中 M——标准EDTA溶液的摩尔浓度;
V——耗用标准EDTA溶液的毫升数。
2.还原剂浓度
  次亚磷酸钠NaH2PO2·H2O浓度的测定
其原理是在酸性条件下,用过量的碘氧化次磷酸钠,然后用硫代硫酸钠溶液反滴定自剩余的碘,淀粉为指示剂。
试剂
(1)盐酸 1:1。
(2)碘标准溶液0.1mol按常规标定。
(3)淀粉指示剂1%。
(4)硫代硫酸钠0.1mol按常规标定。
分析方法:
用移液管量取冷却后的镀液5ml于带盖的250mL锥形瓶中;加入盐酸25mL碘标准溶液于此锥形瓶中,加盖,置于暗处0.5h(温度不得低于25℃);打开瓶盖,加入1mL淀粉指示剂,并用硫代硫酸钠标准溶液滴定至蓝色消失为终点。
计算:
C NaH2PO2·H2O = 10.6(2M1V1-M2V2) (g/L)
式中 M1——标准碘溶液的摩尔浓度;
V1——标准碘溶液毫升数;
M2——标准硫代硫酸钠溶液的摩尔浓度;
V2——耗用标准硫代硫酸钠溶液毫升数。
3.NaHPO3·5H2O的浓度
  化学镀镍浴还原剂反应产物中影响最大的是次磷酸钠的反应产物亚磷酸钠。其他种类的还原剂的反应产物的影响较小甚至几乎无影响,如DMAB。其测定原理是在碱性条件下,用过量的碘氧化亚磷酸,但次磷酸不参加反应;然而,用硫代硫酸钠反滴定剩余的碘;淀粉为指示剂。
试剂
(1)碳酸氢钠溶液 5%。
(2)醋酸 98%。
(3)其余试剂同前。
分析方法:
用移液管量取冷却后的镀液5ml于250mL的锥形瓶中(可视Na2HPO3含量多少决定吸取镀液体积),加入蒸镏水40mL。
加入碳酸氢钠溶液50mL,使用移液管量取40mL标准碘溶液于锥形瓶中,加盖,放置暗处1h。
开启瓶盖,滴加醋酸至PH<4,摇匀,用硫代硫酸钠滴定至溶液呈淡黄色,加入淀粉试剂1mL,继续滴定至蓝色消失1min即为终点。
计算:
CNa2HPO3=12.6(2M1V1-M2V2) (g/l)
式中 M1——标准碘溶液的摩尔深度;
V1——耗用标准碘溶液的毫升数;
M2——标准硫代硫酸钠溶液的摩尔深度;
V2——耗用标准硫代硫酸钠的毫升数.
4.其他化学成分的浓度
  化学镀镍浴中还含有多种有机羧酸盐作为络合剂、缓冲剂、稳定剂等,其深度的测定在现场进行比较困难;大多数实验室采用高效液相色谱分离,红外、紫外可见光谱、质谱定性定量分析。化学镀镍浴中有害金属离子则采用发射光谱、原子吸收光谱定性定量分析。
5.化学镀镍浴稳定性的测定
  取试验化学镀镍液50mL,盛于100mL的试管中,浸入已经恒温至60±1℃的水浴中,注意使试管内溶液面低于恒温水浴液面约2cm。半小时后,在搅拌下,使用移液管量取浓度为100×10-6 的氯化钯溶液1mL于试管内。记录自注入氯化钯溶液至试管内,化学镀浴开始出现混浊(沉淀)所经历的时间,以秒表示。
这是一种测定化学镀镍浴稳定性的加速试验方法,可作为鉴别不同化学镀镍浴稳定性时的参考;亦可用于化学镀镍浴在使用过程中稳定性的监控,如果上述试验出现混浊时间明显加快,说明化学镀镍浴处于不稳定状态。

返回上层
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
由于化学镀镍层具有优秀的均匀性、硬度、耐磨和耐蚀性等综合物理化学性能,该项技术已经得到广泛应用,目前几乎难以找到一个工业不采用化学镀镍技术。据报道,化学镀镍在各个工业中应用的比例大致如下:航空航天工业:9%,汽车工业:5%,电子计算机工业:15%,食品工业:5%,机械工业:15%,核工业:2%,石油工业:10%,塑料工业:5%,电力输送工业:3%,印刷工业:3%,泵制造业:5%,阀门制造业:17%,其他:6%。世界工业化国家的化学镀镍的应用经历了80年代空前的发展,平均年净增速率高达10%~15%;预计化学镀镍的应用将会持续发展,平均年净值速率将降低至6%左右,而进入发展成熟期。在经济蓬勃发展的东亚和东南地区,包括中国在内,化学镀应用正在上升阶段,预期仍将保持空前的高速发展。
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
GB/T13913—92自催化镍-磷镀层技术要求和试验方法
ISO4527(1987),ISO/TC107自催化镍磷镀层——规范和试验方法
ASTM B656——79美国 金属上工程用自催化镀镍标准实施方法 MILC 26074B 美国 军用规范 化学镀镍层技术要求
AMS 2404A——航空材料规范 化学镀镍
AMS 2404——航空材料规范 化学镀镍,低磷
NACE T—6A—54美国 腐蚀工程师学会文件 化学镀镍层
DEF STD 03-5/1英国 材料的化学镀镍
NFA-91-105 法国 化学镀镍层特性和测试方法
DIN 50966(1987)德国 功能用化学镀镍
RAL-RG660第二部分(1984)德国 硬铬和化学镀镍层的质量保证
ONORM C2550(1987)奥地利 化学镀镍磷镀层—技术要求和测试


返回上层
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
化学镀镍的历史与电镀相比,比较短暂,在国外其真正应用到工业仅仅是70年代末80年代初的事。
  1844年,A.Wurtz发现金属镍可以从金属镍盐的水溶液中被次磷酸盐还原而沉积出来。化学镀镍技术的真正发现并使它应用至今是在1944年,美国国家标准局的A.Brenner和G.Riddell的发现,弄清楚了形成涂层的催化特性,发现了沉积非粉末状镍的方法,使化学镀镍技术工业应用有了可能性。但那时的化学镀镍溶液极不稳定,因此严格意义上讲没有实际价值。

  化学镀镍工艺的应用比实验室研究成果晚了近十年。第二次世界大战以后,美国通用运输公司对这种工艺发生了兴趣,他们想在运输烧碱筒的内表面镀镍,而普通的电镀方法无法实现,五年后他们研究了发展了化学镀镍磷合金的技术、公布了许多专利。1955年造成了他们的第一条试验生产线,并制成了商业性有用的化学镀镍溶液,这种化学镀镍溶液的商业名称为“Kanigen”。

  目前在国外,特别是美国、日本、德国化学镀镍已经成为十分成熟的高新技术,在各个工业部门得到了广泛的应用。

  我国的化学镀镍工业化生产起步较晚,但近几年的发展十分迅速,不仅有大量的论文发表,还举行了全国性的化学镀会议,据第五届化学镀年会发表文章的统计就已经有300多家厂家,但这一数字在当时应是极为保守的。据推测国内目前每年的化学镀镍市场总规模应在300亿元左右,并且以每年10%~15%的速度发展。
石长老
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
化学镀镍,又称为无电解镀镍或自催化镀镍,是通过溶液中适当的还原剂使金属离子在金属表面靠自催化的还原作用而进行的金属沉积过程。

  化学镀溶液的分类方法很多,根据不同的原则有不同的分类法。按PH值分为酸性镀液和碱性镀液,酸性镀液PH值一般在4~6,碱性镀液PH值一般大于8,碱性镀液因其操作温度较低,主要用于非金属材料的金属化(如塑料,陶瓷等);按还原剂类型不同有次亚磷酸盐、胺基硼烷、硼氢化物以及肼做还原剂的化学镀镍溶液;按温度分类则有高温镀液(80~95℃)、低温镀液(60~70℃)以及室温镀液;按镀层磷含量可分为高磷镀液、中磷镀液和低磷镀液,高磷镀液含磷量9%~12%(质量),镀层呈非磁性、非晶态,在酸性介质中有很高的耐腐蚀性。利用镀层非磁性,主要用于计算机硬盘的底镀层、电子仪器防电磁波干扰的屏蔽等以及工件的防腐镀层;中磷镀液获得的镀层含磷量为6%~9%(质量),此类镀液沉积速率快、稳定性好、寿命长,镀层既耐腐蚀又耐磨,在工业中应用最为广泛,如汽车、电子、纺织机械、石油化工机械、食品工业、办公设备、精密机械工业等;低磷镀液含磷量0.5%~5%(质量),此类溶液所得到的镀层硬度高、耐磨,特别是在碱性介质中的耐腐蚀性能明显优于中磷和高磷镀层。近年来还开发了三元镍-磷合金镀液,有镍铬磷、镍铜磷、镍钴磷等多种镀液。

gotoshine
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴