主题:【已应助】气相色谱质谱联用仪优缺点各有那些呢?

浏览0 回复18 电梯直达
Ins_677658a3
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
气相色谱质谱联用仪优缺点各有那些呢?
推荐答案:123回复于2023/12/05
1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
为您推荐
您可能想找: 气质联用(GC-MS) 询底价
专属顾问快速对接
立即提交
123
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
Ins_162a1b9c
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 123(m3149125) 发表:
1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
专业的回复 学习
Ins_162a1b9c
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
Ins_e7684e5a
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
Ins_e7684e5a
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由123(m3149125)发表:1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
赞同
Ins_2a9f6547
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
Ins_2a9f6547
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由123(m3149125)发表:1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
支持
Ins_f5c7e951
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由123(m3149125)发表:1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
支持你
Ins_0a343cfe
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由123(m3149125)发表:1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
up
Ins_7fa85c62
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由123(m3149125)发表:1、气相色谱仪GC作为进样系统,将待测样品分离后直接导入质谱进行检测,即满足了质谱分析对样品单一性的要求,又省去样品制备、转移的繁琐过程,不仅避免了样品受污染,对质谱进样量还能有效控制,也减少了质谱仪的污染,极大地提高了对混合物分离、定性定量效率。

2、定性能力高。用色谱保留时间结合化合物的指纹质谱图鉴定组分,大大优于仅靠色谱保留时间。质谱作为检测器,检测的是离子质量,获得化合物质谱图,解决了气相色谱仪定性的局限性,由于不同化合物的质谱图不一样,因此质谱即是一种通用型检测器,又是有选择性的检测器,可以说GC-MS全扫描方式是最通用的、灵敏度极高的色谱检测,而选择离子和二级质谱扫描方式是最可变的,最具选择性的,最高灵敏度的色谱柱选择性检测,所以应用时优于其他色谱检测器,常常被作为最终确证方法。

3、可分离尚未分离的色谱峰。用提取离子、选择离子监测或选择反应监测法,以及结合某些数据处理方法,可分离总离子流色谱图上尚未分离或被化学噪声所掩盖的色谱峰。

4、可提高定量分析精度。通过同位素稀释和内标技术可提高定量精度和定性能力。

GC-MS的不足在于:分析对象限于在300℃左右及以下可以汽化、并且能离子化的样品;在加热过程中易分解的、极性太强的化合物,如有机酸类等,则需要进行酯化衍生处理才可进行GC-MS分析,如果样品不能汽化也不能酯化则需采取LC-MS或其他方法分析;GC-MS分析样品应是有机溶液,或采用热裂解、顶空进样技术。另外,目前质谱还有个一个很重要的不足是对很多异构体(尤其是位置异构)无法分辨。
全面回复
猜你喜欢 最新推荐 热门推荐
品牌合作伙伴