主题:【分享】【“仪”起享奥运】NMR在能源研究中的应用

浏览0 回复0 电梯直达
通标小菜鸟
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
与其他类型的分析仪器相比,核磁共振设备最大的优点即在于无损检测,同时迅速的分析物质的化学/结构信息,因此其应用面广泛。主要应用在煤炭、石油领域,近年来固体NMR技术也已被广泛应用于电化学储能体系。

1、煤炭

NMR技术在煤炭化学组成和物理形态分析中发挥着越来越重要的作用。其主要优势在于检测对象的状态几乎不受限制,可以是原煤或经过加工处理的煤炭,也可以是煤炭的气化、热解或液化产物,由于其非接触式快速测量的特点,煤炭化工过程不同阶段的中间产物也可以检测。

在煤炭检测使用到的NMR技术方法主要有2种:液体NMR和固体NMR。其中,液体NMR主要是液体1H-NMR谱、13C-NMR谱、多脉冲序列如DEPT技术(无畸变极化转移增强法)、液体二维谱等等。固体NMR主要包括交叉极化(CP)、高功率质子去耦、魔角旋转(MAS)、偶极去相(DD)、固体二维谱等。

NMR在煤炭中的应用主要分为两大类:一是分析煤炭组成,如芳香族、脂环族物质含量分析,液化产物的色谱和NMR分析,加氢产物分析,煤炭和沥青碳化初期组成变化的高温1H-NMR分析,酚类分析,煤炭低温氧化特征分析等;二是煤炭的热解产物实时监测,如观测热解过程中脂肪碳和芳香碳相对含量的变化,分析煤炭中不同种类的官能团等。另外,它还是目前唯一一种可以同时测定含水率和煤样孔隙结构的测试方法。

2、石油

NMR技术于20世纪末开始应用于石油地质研究。如今应用范围涉及到石油地质、石油测井、石油化工等领域。

在地质勘探领域中,主要使用傅里叶核磁变换共振波谱仪以及多脉冲电磁分辨谱等设备。主要应用包括:分类干酪根、确定有机质成熟度、评价生油浅量等。

在测井领域,主要利用核磁测井技术。基本原理是在井中放置一块磁体,发射等于该均匀极化区域氢核的核磁共振频率,接受氢核在退激过程中的衰减信号,利用油与水弛豫时间的差别来检验油层。使用该技术可以克服以体积模型为基础的传统方法受井眼,岩性及地层水矿化度影响的缺陷,解决油气藏的储层评价和油气识别问题。使用平均结构信息来评估原油总体特性也有助于石油工业的生产。

由于油气水在核磁共振特性上差异巨大,在储层物性上,可以用核磁测井技术评价孔隙度,渗透率及饱和度。在储层流体识别方面,可以利用油气水的纵向弛豫时间和扩散系数的差异识别三者,对于低阻油层等电阻率测井传统方法识别有困难的储层很实用。另外,核磁共振录井参数中包含了油气含量和产出能力等信息,可以为试油层位的确定提供资料,为钻井施工设计提供参考的地层压力梯度和破裂压力梯度。

在石油化工领域,可以使用核磁共振技术分析原油的各个馏分段,比如柴油组分、减压馏分、渣油的化学组成与结构等。具体说来,利用13C-NMR谱分析原油烃类含量。根据烃类组成可以将原油有效分类。对于燃料油,可以直接测定其中某些组分的含量、测定结构参数并寻找其余油品性质的关系;对于蜡油和重油,可以定性定量地反映出碳氢及杂原子所处的化学环境。
3、 锂/钠离子电池材料

锂/钠离子电池材料局域结构是影响材料循环性能和倍率性能的重要因素。固体核磁共振技术、XAS和对密度分布函数是常用的表征材料局域结构的办法。其中,固体NMR技术由于无损,定量,原位的优点,十分有效便利。在电池材料NMR研究中常用试验方法如表1所示。

表1 电池材料NMR研究常用研究方法



4、光催化分解水

自从1972年Fujishima 等人首次发现使用紫外光照射TiO2电极可以分解水产生H2以来,开发廉价实用的新型催化剂一直是实现太阳能分解水高效利用的关键因素。近年来众多研究者使用STM、FTIR、TPD、DFT等手段研究分解水的微观过程,但其测试条件过于理想化,与实际存在较大差距。核磁共振技术可实现原位无损检测且可以准确鉴定未知化合物结构,因此在微观反应过程研究中有一定优势。

图1 核磁原位检测光催化分解水制氢反应示意图

为您推荐
您可能想找: 核磁共振(NMR) 询底价
专属顾问快速对接
立即提交
可能感兴趣
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴