5.1 生物分析法
传统的生物分析法通常用小鼠腹腔注射或口腔灌喂评价微囊藻毒素的毒性。
用纯化的微囊藻毒素或水华蓝藻中粗提藻毒素进行测试,根据其生理病变及半致死量可初步确定其毒性(除个别异构体的LD50为200~250μg/kg,多数微囊藻毒素的LD50为60~70ug/kg)。这也是毒理评价的常用方法。此外还有用无脊椎动物如虾、贝、水蚤及其卵进行毒性评价的研究,以细菌进行生物分析也有报道。这类方法灵敏度较差,所得到的毒型结果与小鼠的品系有关,可比性较差,且无法确定毒素类型及结构。但该方法操作简单,且可以监测到过去未曾发现的新毒素。
5.2 化学分析法
化学分析法主要包括
气相色谱 (GC)、薄层色谱(TLC)、高效
液相色谱(HPLC)、
液相色谱/质谱分析(LC/MS)及毛细管电泳(CE)等,其中HPLC应用最广。这些方法利用微囊藻毒素的物化性质结合灵敏的光电技术对其进行定性、定量分析。
(一)、高效
液相色谱(HPLC)
液相色谱可以分析一些
气相色谱无法分析的挥发性差、极性强、热稳定性差的物质。常用的检测器有紫外-可见光(UV-VIS)(ultraviolet- visible)检测器、示差折光检测器、荧光、化学发光检测器、火焰离子化检测器和电化学检测器等。
HPLC技术一般采用正相或反相色谱柱对毒素进行分离,然后进行紫外(UV)、荧光(FL)或化学发光(CL)检测。将被测毒素与标准毒素的滞留时间进行比较可对被测毒素进行鉴定,将被测毒素与标准毒素的峰面积进行比较可对其进行精确定量。目前常采用HPLC/UV法对MC进行监测,监测限度一般为ng级。
高效
液相色谱是目前应用、研究较多的方法,这一方面取决于微囊藻毒素本身的物理和化学性质,另一方面也因为该法有良好的灵敏度(可达0.1μg/L)和选择性。其步骤是先将水华蓝藻的毒素提取液或实际水样通过固相萃取吸附富集,溶剂淋洗后将净化的微囊藻毒素洗脱,用于定性分析。用于色谱分析。同时,可利用
液相色谱的特点,与质谱或核磁共振联用确定其分子式和结构。
(二)、LC/MS
HPLC监测技术往往需要标准毒素,而目前已发现60多种MC,多数缺乏标准毒素,这限制了HPLC的进一步应用。LC/MS技术很好地解决了这一问题,即使没有标准毒素,只要知道这种毒素的分子量,就可对其进行定性,而且LC/MS技术亦可对毒素进行精确定量。快速原子轰击质谱(FABMS)和
液相次级离子质谱(LSIMS)是确定毒素分子量的有效手段。
(三)、
气相色谱法(GC)
气相色谱法的一次进样可以对多种物质混合样品的各个组分进行定性、定量分析。
气相色谱法的优点是操作简单、分离效能高、选择性强、分析速度快。局限性主要表现在如果没有标准样品对照,就无法定性分离组分。用于
气相色谱法的检测器多达十几种,如电子捕捉检测器、氢火焰离子化检测器、碱离子化检测器等。其中电子捕捉检测器只对具有电负性的物质(卤素、硝基、氧原子等化合物)有响应,而且选择性强、灵敏度高,广泛应用于有机氯农药和其它含有电负性原子的农药残留检测。
气相色谱-质谱联用(GC-MS)技术已经比较成熟,结合了
气相色谱分离特性强和质谱仪良好的定性能力,使分离、定量和定性同时进行。但是它的局限性在于只适合于分析可以气化的样品。目前高分辨
气相色谱-高分辨质谱仪(HRGC-HRMS)(High Respective)技术可以检测到单位体积内几个fg的量。如此高的检测灵敏度也会带来一些问题,因为样品可能很快会被接触到的玻璃容器、试剂甚至是实验室的空气所污染。
GC和GC/MS可用于MC总量的测定。
最近又发展了毛细电泳(CE)法。后者分析速度快、具有柱上富集功能并应用激光诱导荧光(laser-induced fluorescence, LIF)检测器提高灵敏度。此外,同生化检测法相比,CE易于实现自动化,避免了放射性物质。TLC也是有效的毒素监测手段,易于操作,不需特殊设备,监测限度可达ng级,但在监测的灵敏度方面要逊色于HPLC。