主题:【转帖】药物代谢动力学(影响药物代谢的因素)

浏览0 回复2 电梯直达
职业游民
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
(一)药物代谢的遗传多态性

由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:弱代谢者(poor metabolizer)或PM-表型1,而强代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P4502C的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表2-4)。P4501A1,P4501A2是芳香碳氢化合物羟化酶,激活某些致癌原,其遗传变异与某些癌的易患性有关。

表2-4 遗传多态性与药物代谢



代谢途径


药物举例


人群中的频率(%)




C-氧化


异喹胍,金雀花碱,右旋甲吗喃,阿片类


白种人5-10


CYP4502D6


C-氧化


β-肾上腺受体拮抗剂,乙妥英,甲苯巴比士


白种人4


CYP4502C


乙酰化


环已巴比土,异烟肼,磺胺二甲嘧啶,咖啡因


日本人10


N-乙酰基转移酶白种人30-70
为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
职业游民
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
(二)药酶的诱导和抑制

1.酶诱导作用某些亲脂性药物或外源性物质(如农药、毒物等)可使肝内药酶的合成显著增加,从而对其它药物的代谢能力增加,称为酶的诱导。在形态学上有光面内质网增生和肥大。目前,已知至少有200多种的药物和环境中的化学物质,具有酶诱导的作用。其中,比较熟知的苯巴比妥、导眠能、眠尔通、保太松、苯妥英钠、利福平、灰黄霉素、安体点特舒通、666、DDT、3-甲基胆蒽和3,4-苯等。药酶的诱导有时可造成药物性肝损伤或化学致癌。环境中的杀虫剂、烟草燃烧和烧烤牛肉的产物等亦能诱导P450。

2.酶抑制作用 有些药物通过抑制药酶,使另一药物的代谢延迟,药物的作用加强或延长,此即酶的抑制。微粒体药酶的专一性不高,多种药物可以作为同一酶系的底物,这样可能出现各种药物之间对酶结合部位的竞争。对药酶亲和力低的药物,不仅它本身的代谢速率较慢,而且当存在另一种对药酶有高亲和力药物时,它对前者的竞争能力就较差。因此,一种药物或毒物受一种酶催化时,可以影响对其它药物的作用。已经发现保太松、双香豆素等可抑制甲磺丁脲的代谢,而增强其降血糖作用。长期服用别嘌呤醇或去甲替林,可以造成酶抑制。氯霉素可抑制甲磺丁脲、苯妥英钠、双香豆素的代谢。

(三)其他

影响药物代谢的其他有关因素有年龄(新生儿、早产儿、老年)、性别、昼夜的调节、营养状态、饥饿、妊娠和内分泌等。

以上这些因素可以解释为什么不同的个体药效和不良反应出现的差异。
职业游民
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
三、肝脏对药物的排泄

除了药物的生物转化外,肝脏对药物代谢的第二个重要功能是将药物从胆汁排泄。一般来说,分子量大于400-500的化合物,主要直接从胆汁排泄。分子量小于300的物质进入血液,从肾脏排出。从胆汁排出的药物,大多是已经通过第一相和第二相生物转化后已形成的结合代谢物,但也有少数未经转变或仍呈活性状态的药物。肝脏对后者的排泄能力,直接影响到该药在血液内的浓度,利福平就是一个例子。经胆汁排入肠道的结合代谢产物,为高度水溶性,不易从肠道吸收,随同粪便一起排出体外。但有些代谢物,在肠壁或细菌的某些水解酶(如葡萄糖醛酸苷酶)的作用下,去掉结合物,又成为脂溶性,可以从肠黏膜吸收,进入门静脉系统,形成“肠肝循”,使药物作用的时间延长。另外,在肾功能减退时,肝脏对药物的排泄可能是一个重要的代偿手段。

四、肝脏疾病对药物代谢的影响

肝脏疾病时,除了肝脏的药酶系和结合作用的改变可以影响药物代谢外,还有其他一些重要的因素亦影响药物代谢和血浓度,包括肝脏的有效血流量,肝细胞对药物的摄取和排出,有效肝细胞的总数,门-体血液分流,胆道畅通情况,血浆蛋白浓度和药物的吸收等。

药物通过&U 2925;脏的总消除率(包括与肝组织结合、肝脏代谢及胆汁排泄的速率),可用药物进出肝脏的速率差表示:

药物消除率=Q·CA-Q·Cv,Q代表肝血流量,CA和Cv分别代表进出肝脏的血药浓度。Q·CA表示药物进入肝脏的速率,Q·CA表示流出的速率。药物的肝脏清除速率与药物进入肝脏速率的关系,可用肝摄取率(extractionratio,ER)表示,它是指药物从门静脉(口服途径)通过肝脏消除的分数。肝摄取率可介于0-1之间。如ER为0.5,表示该药从门静脉进入肝脏后有一半被消除,其余(1-ER)通过肝脏进入大循环。最近提出肝脏消除率可更好地表明药物在肝脏的清除与进入肝脏药物浓度的关系,它指单位时间内有多少量(ml)血浆所含的药物被肝脏所清除。

肝脏清除率(C1H)=Q×ER

肝脏对各种药物的摄取率不同,对于高摄取率的药物(ER≌1.0)肝脏的内在清除率(C1in1)很高,血浆中的药物通过肝脏时几乎可全部被清除,药物的肝清除率几乎等于有效肝血流量。这类药物的清除受血流量影响大,称为流速限定性药物。肝摄取率高的药物,受血浆蛋白结合的影响较小,口服后首次通过作用非常显著。对摄取率低(ER<0.2)的药物,肝脏的内在清除率低,受到药酶和结合酶系的影响大,而受血流量的影响较小,称为能力限定性药物。这类药物受血浆蛋白结合影响较大,其首次通过作用不明显。

由此可见,肝病时药物清除的改变很复杂,与药物本身的理化特性也有关。一般来说,药物代谢和清除的影响,与肝病的严重程度成正比。急性肝炎时改变较轻而短暂,失代偿期肝硬化时则较为显著。例如在肝硬化时,保太松、氨基比林、安定、利眠宁、甲磺丁脲、氯霉素和西米替丁等的半衰期延长,肝脏的清除率降低。在慢性或严重肝病时,由于肝脏有效血流量降低,口服给药后使一些高ER药物的首次通过作用受阻,生物利用度增加,药物清除减慢,血药浓度升高,如水杨酸类、普萘洛尔(心得安)、氯丙嗪、利他林、吗啡、哌替定(度冷丁)等。在严重肝病时,由于大脑的GABA、安定和吗啡受体增多或其敏感阈值降低,即使给于正常1/2-1/3剂量也可诱发肝性脑病。
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴