主题:【分享】电泳技术发展简史

浏览0 回复3 电梯直达
老鱼
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
电泳技术发展简史

1809年俄国物理学家Рейсе首次发现电泳现象。他在湿粘土中插上带玻璃管的正负两个电极,加电压后发现正极玻璃管中原有的水层变混浊,即带负电荷的粘土颗粒向正极移动,这就是电泳现象。

1909年Michaelis首次将胶体离子在电场中的移动称为电泳。他用不同pH的溶液在U形管中测定了转化酶和过氧化氢酶的电泳移动和等电点。

1937年瑞典Uppsala大学的Tiselius对电泳仪器作了改进,创造了Tiselius电泳仪,建立了研究蛋白质的移动界面电泳方法,并首次证明了血清是由白蛋白及α、β、γ球蛋白组成的,由于Tiselius在电泳技术方面作出的开拓性贡献而获得了1948年的诺贝尔化学奖。

1948年Wieland和Fischer重新发展了以滤纸作为支持介质的电泳方法,对氨基酸的分离进行过研究。
从本世纪50年代起,特别是1950年Durrum用纸电泳进行了各种蛋白质的分离以后,开创了利用各种固体物质(如各种滤纸、醋酸纤维素薄膜、琼脂凝胶、淀粉凝胶等)作为支持介质的区带电泳方法。

1959年Raymond和Weintraub利用人工合成的凝胶作为支持介质,创建了聚丙烯酰胺凝胶电泳,极大地提高了电泳技术的分辨率,开创了近代电泳的新时代。30多年来,聚丙烯酰胺凝胶电泳仍是生物化学和分子生物学中对蛋白质、多肽、核酸等生物大分子使用最普遍,分辨率最高的分析鉴定技术,是检验生化物质的最高纯度:即“电泳纯”(一维电泳一条带或二维电泳一个点)的标准分析鉴定方法,至今仍被人们称为是对生物大分子进行分析鉴定的最后、最准确的手段,即“Last Check”。
由80年代发展起来的新的毛细管电泳技术,是化学和生化分析鉴定技术的重要新发展,己受到人们的充分重视。
电泳的基本原理

电泳是指带电颗粒在电场的作用下发生迁移的过程。许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。

电泳过程必须在一种支持介质中进行。Tiselius等在1937年进行的自由界面电泳没有固定支持介质,所以扩散和对流都比较强,影响分离效果。于是出现了固定支持介质的电泳,样品在固定的介质中进行电泳过程,减少了扩散和对流等干扰作用。最初的支持介质是滤纸和醋酸纤维素膜,目前这些介质在实验室已经应用得较少。在很长一段时间里,小分子物质如氨基酸、多肽、糖等通常用滤纸或纤维素、硅胶薄层平板为介质的电泳进行分离、分析,但目前则一般使用更灵敏的技术如HPLC等来进行分析。这些介质适合于分离小分子物质,操作简单、方便。但对于复杂的生物大分子则分离效果较差。凝胶作为支持介质的引入大大促进了电泳技术的发展,使电泳技术成为分析蛋白质、核酸等生物大分子的重要手段之一。最初使用的凝胶是淀粉凝胶,但目前使用得最多的是琼脂糖凝胶和聚丙烯酰胺凝胶。蛋白质电泳主要使用聚丙烯酰胺凝胶。
为您推荐
您可能想找: 毛细管电泳(CE) 询底价
专属顾问快速对接
立即提交
老鱼
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
电泳装置主要包括两个部分:电源和电泳槽。电源提供直流电,在电泳槽中产生电场,驱动带电分子的迁移。电泳槽可以分为水平式和垂直式两类。垂直板式电泳是较为常见的一种,常用于聚丙烯酰胺凝胶电泳中蛋白质的分离。电泳槽中间是夹在一起的两块玻璃板,玻璃板两边由塑料条隔开,在玻璃平板中间制备电泳凝胶,凝胶的大小通常是12cm ´ 14 cm,厚度为1mm~2 mm,近年来新研制的电泳槽,胶面更小、更薄,以节省试剂和缩短电泳时间。制胶时在凝胶溶液中放一个塑料梳子,在胶聚合后移去,形成上样品的凹槽。水平式电泳,凝胶铺在水平的玻璃或塑料板上,用一薄层湿滤纸连接凝胶和电泳缓冲液,或将凝胶直接浸入缓冲液中。由于pH值的改变会引起带电分子电荷的改变,进而影响其电泳迁移的速度,所以电泳过程应在适当的缓冲液中进行的,缓冲液可以保持待分离物的带电性质的稳定。
为了更好的了解带电分子在电泳过程中是如何被分离的,下面简单介绍一下电泳的基本原理。在两个平行电极上加一定的电压(V),就会在电极中间产生电场强度(E),
上式中L是电极间距离。在稀溶液中,电场对带电分子的作用力(F),等于所带净电荷与电场强度的乘积:

上式中q是带电分子的净电荷,E是电场强度。

这个作用力使得带电分子向其电荷相反的电极方向移动。在移动过程中,分子会受到介质粘滞力的阻碍。粘滞力(F’)的大小与分子大小、形状、电泳介质孔径大小以及缓冲液粘度等有关,并与带电分子的移动速度成正比,对于球状分子,F’的大小服从Stokes定律,即:F’=6πrηυ
式中r是球状分子的半径,η是缓冲液粘度,υ是电泳速度(υ= d / t,单位时间粒子运动的距离,cm / s )。当带电分子匀速移动时: F = F’,∴ q•E = 6πrηυ
电泳迁移率(m)是指在单位电场强度(1V/cm)时带电分子的迁移速度:

公式?

所以:公式?

这就是迁移率公式,由上式可以看出,迁移率与带电分子所带净电荷成正比,与分子的大小和缓冲液的粘度成反比。
用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量时,实际使用的是相对迁移率mR。即:

公式?

上式中:d-带电粒子泳动的距离,t-电泳的时间,V-电压,L-两电极交界面之间的距离,即凝胶的有效长度。 因此,相对迁移率mR就是两种带电粒子在凝胶中泳动迁移的距离之比。

带电分子由于各自的电荷和形状大小不同,因而在电泳过程中具有不同的迁移速度,形成了依次排列的不同区带而被分开。即使两个分子具有相似的电荷,如果它们的分子大小不同,由于它们所受的阻力不同,因此迁移速度也不同,在电泳过程中就可以被分离。有些类型的电泳几乎完全依赖于分子所带的电荷不同进行分离,如等电聚焦电泳;而有些类型的电泳则主要依靠分子大小的不同即电泳过程中产生的阻力不同而得到分离,如SDS-聚丙烯酰胺凝胶电泳。分离后的样品通过各种方法的染色,或者如果样品有放射性标记,则可以通过放射性自显影等方法进行检测。

影晌电泳分离的主要因素
由电泳迁移率的公式可以看出,影响电泳分离的因素很多,下面简单讨论一些主要的影响因素:
1. 待分离生物大分子的性质
待分离生物大分子所带的电荷、分子大小和性质都会对电泳有明显影响。一般来说,分子带的电荷量越大、直径越小、形状越接近球形,则其电泳迁移速度越快。
2. 缓冲液的性质
缓冲液的pH值会影响待分离生物大分子的解离程度,从而对其带电性质产生影响,溶液pH值距离其等电点愈远,其所带净电荷量就越大,电泳的速度也就越大,尤其对于蛋白质等两性分子,缓冲液pH还会影响到其电泳方向,当缓冲液pH大于蛋白质分子的等电点,蛋白质分子带负电荷,其电泳的方向是指向正极。为了保持电泳过程中待分离生物大分子的电荷以及缓冲液pH值的稳定性,缓冲液通常要保持一定的离子强度,一般在0.02-0.2,离子强度过低,则缓冲能力差,但如果离子强度过高,会在待分离分子周围形成较强的带相反电荷的离子扩散层(即离子氛),由于离子氛与待分离分子的移动方向相反,它们之间产生了静电引力,因而引起电泳速度降低。另外缓冲液的粘度也会对电泳速度产生影响。
老鱼
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
3. 电场强度
电场强度(V/cm)是每厘米的电位降,也称电位梯度。电场强度越大,电泳速度越快。但增大电场强度会引起通过介质的电流强度增大,而造成电泳过程产生的热量增大。电流在介质中所做的功(W)为:
W=I2.R.t
上式中:I为电流强度,R为电阻,t为电泳时间。
电流所作的功绝大部分都转换为热,因而引起介质温度升高,这会造成很多影响:
①样品和缓冲离子扩散速度增加,引起样品分离带的加宽;②产生对流,引起待分离物的混合;③如果样品对热敏感,会引起蛋白变性;④引起介质粘度降低、电阻下降等等。电泳中产生的热通常是由中心向外周散发的,所以介质中心温度一般要高于外周,尤其是管状电泳,由此引起中央部分介质相对于外周部分粘度下降,摩擦系数减小,电泳迁移速度增大,由于中央部分的电泳速度比边缘快,所以电泳分离带通常呈弓型。降低电流强度,可以减小生热,但会延长电泳时间,引起待分离生物大分子扩散的增加而影响分离效果。所以电泳实验中要选择适当的电场强度,同时可以适当冷却降低温度以获得较好的分离效果。
4. 电渗
液体在电场中,对于固体支持介质的相对移动,称为电渗现象。由于支持介质表面可能会存在一些带电基团,如滤纸表面通常有一些羧基,琼脂可能会含有一些硫酸基,而玻璃表面通常有Si-OH基团等等。这些基团电离后会使支持介质表面带电,吸附一些带相反电荷的离子,在电场的作用下向电极方向移动,形成介质表面溶液的流动,这种现象就是电渗。在pH值高于3时,玻璃表面带负电,吸附溶液中的正电离子,引起玻璃表面附近溶液层带正电,在电场的作用下,向负极迁移,带动电极液产生向负极的电渗流。如果电渗方向与待分离分子电泳方向相同,则加快电泳速度;如果相反,则降低电泳速度。
5. 支持介质的筛孔
支持介质的筛孔大小对待分离生物大分子的电泳迁移速度有明显的影响。在筛孔大的介质中泳动速度快,反之,则泳动速度慢。


转贴来的,转的人也不注明出处,也无从查找。里面好多公式没有了!看有时间整理一下,把缺的公式补齐!
百年树人
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴