主题:【分享】用变性梯度凝胶电泳、PCR及GC发夹检测突变

浏览0 回复2 电梯直达
省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
变性梯度胶凝电泳(DGGE)能够将具有单个碱基差别的DNA分子分离开来。分离以 DNA在溶液中的解链特性为基础。以温度或变性剂浓增高时,DNA分子在不同的区域相 对应的解链温度称为基础。解链区域的长度从25个碱基对到数百个碱基对不等,与每 一个解链区域相对应的解链温度称为解链温度(Tm)。由于一个DNA链上相邻碱基间的 堆积作用在DNA双螺旋的稳定上起着相当重要的作用,因此解链区域的Tm值主要取决 于的序列。既使是很小的变化也会引起DNA片段Tm值的改变,如单碱基替代可 引起1.5℃的差异。在DGGE系统中,DNA片段在变性剂梯度聚丙烯酰胺凝胶中电泳,凝 胶中自上而下所含变性剂浓度呈线性增加。DNA片段在进入变性剂某一浓度时,此浓 度下DNA片段在最低温度解链区域解链(相当于该区域的Tm值),此时DNA分子成分枝状 结构,它使DNA分子在胶中的移动减慢。如果梯度条件选择恰当,因单个碱基变化使 不同的DNA片段在凝胶中的不同位置分叉,随后DNA片段移动减慢,从而使笪DNA片段 最终分离开来。


DGGE可以用来检测除最高温度解链区域以外的所有发生单个碱基变化的DNA片段。例如一个DNA片段有三个解链区域,其中头两个区域中的碱基变化能够检测到;但 是最后一个区域的碱基变化,由于缺乏完全解链区域时依赖序列移动的DNA片段,一 般不能检测。我们能够利用克隆的DNA片段通过一个富含GC片段与有两个解链区域的 DNA片段结合来解决这一困难,富含GC的片段我们称之为GC发夹。当缺乏GC发夹时, 只有那些发生在此DNA片段第一个区域所发生的单碱基变化可用DGGE分开;而GC发夹与 该DNA片段结合能够区分第二区域所发生的单碱基改变。\par我们对GC发夹的研究最 初是通过将突变的DNA片段克隆入一个质粒载体,使其与一个含80%鸟嘌呤与胞嘧啶的 300bp片段连接,并用限制性内切酶隆解此克隆DNA,使之释放出与GC发夹结合的靶片 段。虽然该方法是行得通的,但是要设计一个适合于直接检测基因组DNA片段、特别 是带有长达300bp的GC发夹的片段仍然存在着困难。克服这个困难的第一步是有关的 实验观察以及理论推算,结果表明GC发夹长为30bp就足能用于绝大多数DNA片段的 DGGE分析。第二步进展在
聚合酶链反应(PCR)基础上,设计一方法使短的GC发夹与DNA 基因组结合。该方法是根据一篇报道,即有限制性内切酶位点的DNA短片段能够与寡 核苷酸相连,此寡核苷酸用于PCR扩增DNA片段;这些在DNA基因组织中未编聯的寡聚核 苷酸的wè5'尾斣陂织PCR过程中有效地掺入扩增的DNA片段的5'末端。我们最近将该原 理用于DGGE方法,结果表明长40-45bp的GC发夹能够与来源于人基因组的扩增DNA片段 结合,此GC发夹能检测发生单个碱基变化的DNA片段,而当其缺乏GC发夹时,DGGE检 测不到。PCR扩增过程中DNA片段的大量扩增增加了灵敏度,所以只需少量DNA样品, 经EB染色的DNA可以很容易地检测出来,因而不需使用放射性探针。因不需与放射性 探针杂交,此法也能比较容易地检测低、中和高拷贝数的重复序列,而这些序列用 Southern杂交来分析有时是十分困难的。在此将详细描述本方法的实验过程,并且专 门讨论该方法如何用于完整的从短到中等长度的基因的分析。
为您推荐
您可能想找: PCR 询底价
专属顾问快速对接
立即提交
省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
策略
利用PCR扩增基因组或者克隆的DNA样品,两条寡核苷酸链与DNA的两侧相结合。 其中一条链的5'末端附加40-45nt的GC富含序列;该5'末端结构在PCR过程中掺入扩增 的DNA片端的5'末端。扩增的DNA片段在对待测DNA浓度合适的变性剂梯度胶中电泳, 凝胶用EB染色、紫外检测。因突变或中性多态性而具有一个碱基差别的DNA片段在凝 胶中迁移到不同的位置,经EB着色呈现不同的带。
在开始使用PCR/GC发夹方法前有几个方面需予以考虑。如下面将要讨论的,尽管 可用DGGE检测和1000bp的DNA片段,但该方法检测500bp和更短的DNA片段更为有效。 在PCR扩增以及DGGE过程中,可用几种不同的方法来选择寡核苷酸以达到最佳实验结 果。此外,有三种不同的方法来决定对于每个扩增DNA片段最佳的变性梯度以及电泳 时间。 @


核苷酸的设计

在使用PCR/GC发地,必须选择用来扩增靶DNA的两个寡核苷酸。一般扩增最好是 选择长度在100-500bp之间的DNA片段。之所以选择范围的DNA片段因为用DGGE检测长 于500bpDNA片段时,突变型和野生型分子之间的分辨率会下降;此外,超过几百个碱 基对的DNA片段在聚丙烯酰胺凝胶电泳中移动非常缓慢,走电泳的时间太长,因此用 PCR/GC发夹的方法来检测几个kb的全基因,我们建议设计几对寡核苷酸将此基因扩增 成几个带有重叠的DNA片段。虽然用PCR可同时扩增多个片段,但扩增临近片段时应小 心避免产生不必要的复合体产物。因此,为了达到最理想的结果,每一对引物应分别 用于不同的PCR反应。但是通常可根据DNA片段的解链特性在DGGE之前、PCR扩增之后 将两个或多个片段混合,只用单孔胶分析多个片段。

根据DNA片段的核苷酸序列[6,7,14,15],有可能推知它的解链特性;并且根据 推论选择寡核苷酸的位置以便合成适合于DGGE的DNA片段。当然,也可以简便、有效 地选择靶片段而不用推知解链特性,选择扩增DNA片段的寡核苷酸并且在PCR扩增后选 择最佳的DGGE分析条件。下面将提供有关使用上述简便方法的具体建议:
省部重点实验室
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
1、选择两个相对长度为20-25nt的核苷酸序列作为特异的引物通过PCR合成靶片 段。理想的引物核苷酸序列应该最少有50%G+C,并且不应该有间接重复序列。


2、设计两个PCR引物,其中一个有额外的40个100%G+C核苷酸附加在5'末端作为GC 发夹。解链推测以及我们的经验表明任何随机的GC序列都能达实验目的。当然有几个 建议可以避免一些问题。避免在GC发夹序列中的重复延伸,此重复结构在PCR过程中 形成干扰引物与模板退火的二级结构。同时在设计的GC发夹引物中,最好C碱基经G碱 基要多,并且使引物中的连续的G碱基减至最低。之所以如此,是因为寡核苷酸合成 仪合成含有少数相邻G碱基的引物产量很低。之所以如此,是因为寡核苷酸合成仪合 成含有少数相邻G碱基的引物产量很低。只要每个PCR反应分别进行,在每组引物中利 用相同的GC发夹序列都能得到满意的结果。我们曾用6个不同的GC发夹序列成功地扩 增出了几个不同的DNA片段。其中一个序列如下所示:
5'CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCC 3' h\3-8 m 
该序列在3'末端接上长20-25核苷酸特异序列,此序列可与基因组DNA中的靶片段 区退火。虽然我们在该GC发夹中间加入了一个T碱基,因其会使Tm值降低,所以建议 不要采用此形式;我们建议使用含100%G+C的发夹,发夹顺序如上所示或类似。根据序 列的解链计算以及我们使用6种不同的GC发夹的经验,表明一个长40核苷酸的发夹最 为有效。因此超过该长度的发夹就没有必要。虽然短于40核苷酸的GC发夹与一些DNA 片段结合也有效,但它们对其他一些片段就不那么有效;因此,我们不主张使用少于 40个核苷酸的GC发夹。


3、对于大多数DNA片段,只需在其中一个的末端具有单一的GC发夹。有关的解链 预测以及某些实验表明GC发夹附着于DNA片段的两个末端并增加在DGGE上识别碱基的 分辩率。虽然我们还未扩增用两个分别含不同的GC顺序的寡核苷酸来扩增长达1000bp 的DNA片段,但仍有可能办到,然后用限制性内切酶消化扩增的DNA片段使其酶切位点 差不多位于DNA片段的中间位置,产生两个含GC发夹的片段。使用该方法可能存在的 问题在于两个GC引物在PCR过程中可能彼此干扰。


4、我们用变性的聚丙烯栈腕凝胶电泳纯化用于PCR的寡核苷酸引物;然而有些纯化 对于特异制备的引物可能是不必要的。因为含有GC-发夹的引物至少长60个核苷酸(40 个核苷酸的GC发夹与长20个核酸的特邓列结合),制备物通常含有干扰PCR结果的较短 寡核苷酸;这些片段很容易经制备电泳而除去。纯化之后,引物要经过酚抽提乙醇沉 淀及TE缓冲液悬浮(10mMTris.HCl.pH8.0,1mMEDTA,),使其终浓度达10pmol/μl

猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴