主题:【讨论】ICP中酸效应与酸的关系讨论?

浏览0 回复13 电梯直达
依风1986
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
在ICP的物理干扰中表现一种是“酸效应”,由于ICP使用气动雾化器将样品的溶液雾化后成为气溶胶,其中雾化器的提升量及雾化效率与气溶胶颗粒的大小和均匀程度与试样溶液的物理性质相关,通常在标准溶液和样品定容过程中都要加入一定量的无机酸来防止分析元素的水解或沉淀的,但由于各种无机酸的物理决定了他们在黏度、密度等方面的不同对雾化效率产生影响,不同的酸度值和不同类型酸造成谱线强度的不同称为“酸效应”,含酸溶液的提升量及强度信号均小于水溶液,强度值随酸度增大而降低

那么具体到我们常规实验中使用到HCL.,HNO3,HF,H3PO4,HCLO4,H2SO4等,欢迎大家补充一下试剂,那么酸效应具体如何了,可以排个座位?那么这些酸会有酸效应的影响,可否从分子间基团,分子间作用力等探讨探讨?欢迎欢迎?


该帖子作者被版主 砂锅粥3积分, 2经验,加分理由:鼓励发详细帖。
为您推荐
您可能想找: ICP-AES/ICP-OES 询底价
专属顾问快速对接
立即提交
qq250083771
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
1、粘度从小到大:盐酸、硝酸、高氯酸、磷酸、硫酸
2、一般要求样品和标液基体保持一致(酸度差不多一致),这样对样本和标液的影响大致是相同的,所以对结果影响应该不大吧
3、如果要考虑其中的原理等等,感觉挺难的,不太懂
以上纯属个人见解,如有不妥,敬请拍砖
该帖子作者被版主 czcht2积分, 2经验,加分理由:谢讨论。
依风1986
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 qq250083771(qq250083771) 发表:
1、粘度从小到大:盐酸、硝酸、高氯酸、磷酸、硫酸
2、一般要求样品和标液基体保持一致(酸度差不多一致),这样对样本和标液的影响大致是相同的,所以对结果影响应该不大吧
3、如果要考虑其中的原理等等,感觉挺难的,不太懂
以上纯属个人见解,如有不妥,敬请拍砖


解释的好,你拍我的了,我只是想深入了解这个粘度大小与分子结构的机理关系
qq250083771
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 依风1986(xurunjiao5339) 发表:
原文由 qq250083771(qq250083771) 发表:
1、粘度从小到大:盐酸、硝酸、高氯酸、磷酸、硫酸
2、一般要求样品和标液基体保持一致(酸度差不多一致),这样对样本和标液的影响大致是相同的,所以对结果影响应该不大吧
3、如果要考虑其中的原理等等,感觉挺难的,不太懂
以上纯属个人见解,如有不妥,敬请拍砖


解释的好,你拍我的了,我只是想深入了解这个粘度大小与分子结构的机理关系
呵呵  粘度大小  不知道和分子结构有啥关系  呵呵  明天了  学习哈 
nphfm2009
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
andrew-zhang
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
硫酸,磷酸的黏度比较大,用ICP走硫酸处理的样品,有时候仪器很不稳定,甚至导致熄火,不知道版友有没有碰到过类似情况
andrew-zhang
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
由于盐酸、硝酸、高氯酸干扰效应较小,一般首先使用。硫酸、磷酸黏度大,使灵敏度下降,对待测元素产生严重干扰。故应尽可能少用硫酸和磷酸。然而对含钨的钢,由于磷酸可防止钨酸析出,避免对钼、钒等元素的吸附,对这类钢种仍是有效的分解用酸。常规分析中盐酸和硝酸小于20%,高氯酸小于10%,硫酸小于5%,磷酸小于3%对谱线强度无明显影响。
依风1986
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 nphfm2009(nphfm2009) 发表:
这是个不错的话题,可惜我们没有研究这么深


那就一起研究吧!
依风1986
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
原文由 andrew-zhang(andrew-zhang) 发表:
由于盐酸、硝酸、高氯酸干扰效应较小,一般首先使用。硫酸、磷酸黏度大,使灵敏度下降,对待测元素产生严重干扰。故应尽可能少用硫酸和磷酸。然而对含钨的钢,由于磷酸可防止钨酸析出,避免对钼、钒等元素的吸附,对这类钢种仍是有效的分解用酸。常规分析中盐酸和硝酸小于20%,高氯酸小于10%,硫酸小于5%,磷酸小于3%对谱线强度无明显影响。


好的工作经验啊!欢迎常谈啊!
maerbing
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
Nitric acid* is used primarily in the preparation of inorganic sample types.++ It is a very useful component in the destruction of organics but cannot by itself completely decompose organic matrices.

*All reference to HNO3 will mean 69% 'concentrated' nitric acid unless specified otherwise.

++The conventional meaning of inorganic is intended along with the presence of low molecular weight water soluble organic cmpds. and organometallic cmpds. containing relatively small molecular weight organic components.
The following is a summary of some common inorganic dissolutions using nitric acid:

Dilute 10 - 15 % aqueous dilution - Alkaline earth oxides, lanthanide oxides, actinide oxides, Sc2O3, Y2O3, La2O3.
1:1 HNO3 + H2O - V2O5, Mn oxides, CuO, CdO, Hg oxides Tl oxides, Pb oxides, Bi oxides, Cu0, Zn0, Cd0, Hg0, Pb0.
Concentrated (69%) HNO3 - Mn0, Fe0 (hot), Co0, Ag0, Pd0 (hot), Se0, As0, Bi0, Re0.
1:3 HNO3 + HCl - Pt0, Au0, steel, Fe/Ni alloys, Cu alloys, Cr/Ni steel.
1:1:1 HNO3 + HF + H2O - The metal and oxides of Ti, Zr, Hf, Nb, W, Sn, Al, Si, Ge, Sb, Te, As, Se, Mo and numerous alloys and oxide mixtures containing one or more of these elements.
The only major group of elements not listed above are the alkaline earths, of which are all water soluble.
maerbing
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
In the examples listed above nitric acid is acting:

as a strong acid where inorganic oxides are brought into solution...

    (1)  CaO + 2H3O+    Ca+2 + 3H2O


as an oxidizing agent / acid combo where zero valence inorganic metals and nonmetals are oxidized and brought into solution...

    (2)  Feo + 3H3O+ + 3HNO3 (conc.)    Fe+3 + 3NO2 (brown) + 6H2O

          OR

    (3)  3Cu0 + 6H3O+ + 2HNO3 (dilute)    2NO (clear) + 3Cu+2 + 10H2O


In addition, nitric acid does not form any insoluble compounds with the metals and non-metals listed. The same cannot be said for sulfuric, hydrochloric, hydrofluoric, phosphoric, or perchloric acids.

Facts About Nitric Acid
The highest valence of nitrogen is +5. This is the valence of nitrogen in nitric acid. All three N-O bonds are sp2 hybrid and the NO3- molecule is planar and symmetrical.

The oxidizing ability of nitric acid decreases (reduction potential decreases) as the concentration decreases. Below 2M, the oxidizing ability is nearly eliminated.
Nitric acid undergoes both one and three electron changes. As illustrated above with reaction (2) the one electron change is observed when concentrated. In comparison, the 3 electron change is observed when dilute in reaction (3). The presence of brown fumes is indicative of reactions going by 1 electron.

    (4)  H3O+ + HNO3 + e-1    NO2 (brown) + 2H2O : Concentrated

    (5)  3H3O+ + HNO3 + 3e-1    NO (clear) + 5H2O : Dilute
Nitrate is generally considered to be a 'poor ligand' in that it's coordination ability is not enough to keep hydrolysis from occurring. This statement may be contradicted in certain inorganic text books.
The most common 'good ligands' used in combination with nitric acid are HCl, HF, and tartaric acid (for Sb). If nitric acid was a better ligand, these additional acids would not be needed.
Concentrations of HNO3 between 65% and 69% are known as 'concentrated'; concentrations greater than 69.2% are known as 'fuming nitric acid'.
100% nitric acid is light and heat sensitive and boils at 84 °C. 'Concentrated' nitric acid boils as an azeotrope (with water at 69.2% HNO3) at a temperature of 121.8 °C. The distilled HNO3 (trace metals grade) should be at the 69.2% concentration level.
Check with your manufacturer of doubly distilled nitric acid to determine if the container in which it is packaged is nitric acid leached prior to use. In the case of Teflon containers, the container material is generally assumed to be pure.
PTFE and PFA Teflon can be heated with concentrated nitric acid, even at high pressures or with combinations such as nitric + HCl, nitric + HF, and nitric + H2O2.
Nitric acid is not a strong enough oxidizing agent by itself to convert organic molecules to CO2 and H2O (completely oxidize).
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴