主题:【资料】CNS_06.009_碳酸铵

浏览0 回复0 电梯直达
enhua
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵

碳酸铵

陈玮杰

202107



前言

碳酸铵,是一种无机化合物,化学式为(NH4)2CO3。为无色立方晶体,易溶于水,水溶液呈碱性,不溶于乙醇二硫化碳浓氨水。对光和热均不稳定,稍有吸湿性。在低温和一定压力下,二氧化碳和水与过量的氨反应,可得碳酸铵;也可使硫酸铵与碳酸钙的悬浮液在加热下反应制得;此外,尿素在水溶液中也会逐渐与水反应,生成碳酸铵。碳酸铵的用途广泛,可以用作食品添加剂、肥料、灭火剂、洗涤剂等等,还在医药、橡胶、发酵等工业有所应用。

1理化性质

碳酸铵是无光泽斜方晶结晶粉末。具有强烈的氨气味。一般得不到无水盐,工业品实际上是碳酸氢铵与氨基甲酸铵的复盐。含氨31%,二氧化碳为56%。在空气中不稳定,会逐渐变成碳酸氢铵及氨基甲酸铵。

1.%2 物理性质

表 碳酸铵的物理性质

熔点密度logP折射率蒸汽压外观溶解性
58℃1.50g/cm30.5461.46162.58E-05mmHg at 25°C白色粉末溶于水,不溶于乙醇、二硫化碳及浓氨水中


1.2 化学性质

1、在室温下明显分解



2、与酸反应



3、与碱反应



4、与一部分盐反应



此外,碳酸铵纯品在空气中逐渐失去氨而成碳酸氢铵。在58℃会迅速分解为氨、二氧化碳和水。

1.3包装和贮存

用密闭的玻璃瓶、坛子或铁桶包装,包装上应有明显的“腐蚀性物品”标志。无机腐蚀物品。应贮存在阴凉,通风、隔绝火源的场所。容器要密封,以减少氨的挥发损失。避免日晒分解,不宜久存。不可与酸类物品共贮混运。运输时要防雨淋和日光曝晒。失火时,可用水、砂土扑救。

2碳酸铵的应用

碳酸铵的用途广泛,包括点滴分析锂、镭和钍及碳酸盐合成等。还能用作肥料、灭火剂、洗涤剂。 还可以用作发酵粉、各种铵盐的原料、缓冲剂、印染助剂、肥料以及分析试剂等。

在食品应用中,食用碳酸铵作缓冲剂、中和剂、膨松剂及发酵促进剂。

碳酸铵还能用于磺基水杨酸镀银电解液中,但需要严格控制其中的重金属、硫及硫氰酸盐的含量,否则阳极易发黑。

2.1药理作用

碳酸铵内服后可刺激胃黏膜迷走神经末梢,反射性引起支气管腺体分泌增加,使稠痰稀释,易于咳出,因而对支气管黏膜的刺激减少,咳嗽也随之缓解。此外,本品被吸收至体内后,有小部分从呼吸道排出,带出水分使痰液变稀而利于咳出,对止咳也起一定作用。本品为强酸弱碱盐,是一个有效的体液酸化剂,可使尿液酸化,在弱碱性药物中毒时,可加速药物的排泄。主要适用于支气管炎初期。 本品内服完全被吸收,在体内几乎全部转化降解,仅极少量原形随粪便排出。对光和热均不稳定。稍有吸湿性。

2.2其他应用

2.2.1碳酸铵对凯氏定氮法测定牛奶蛋白的作用

吕媛等的研究表明干扰物质中的非蛋白氮,即碳酸铵对微量凯氏定氮法测定牛奶蛋白含量有干扰,非蛋白氮含量越多, 干扰越明显。

微量凯氏定氮法的精确性和可重复性已经得到了国际的普遍认可,被广泛用于检测食品中蛋白质含量。该研究首先使用凯氏定氮法分别测定牛奶样品的不同浓度稀释品中的蛋白浓度,结果显示50倍和100倍稀释样品中蛋白质浓度的变异系数分别为0.91%、1.02%,表明微量凯氏定氮法在测定牛奶样品中的蛋白含量稳定性好。在测定加入不同干扰物(如碳酸铵)的50倍、100倍稀释牛奶的蛋白含量时,结果显示其相对平均偏差均大于1%,相对标准偏差均大于2%,表明微凯氏定氮法在测定加入不同干扰物的50倍、100倍稀释牛奶的蛋白含量时,重现性差,精密度也差,并且所测定的加入干扰物质的100倍稀释比50倍稀释牛奶牛奶的蛋白含量的准确性要差,这可能是因为相同量的干扰物质对相对稀释牛奶样品的蛋白含量影响更明显,因为相同量的干扰物质在相对稀释牛奶样品中相对较多,所占的分量较大另外,凯式定氮法得到的尿素干扰牛奶样品中蛋白含量最且误差最大的这一现象,这可能和加入牛奶样品中的不同干扰物的含氮量相关,尿素的含氮为46.7%,碳酸铵含氮量为29.2%,氯化铵含氮量为26.2%,尿素中含量相对较高的非蛋白氮对微星凯氏定氢法的干扰也最明显,以至在加入稀释牛奶样品的3种干扰物中,加入尿素的一组相对误差最大.本实验在加入稀释牛奶样品的同一种干扰物中,随着加入的干扰物的量逐渐增加,干扰物对微量凯氏定氮法测定牛奶蛋白含量的干扰越明显,产生的相对误差也逐渐增大例如在结果中,随着加入尿素干扰物的量逐渐增加,两种不同稀释度样品的相对误差分别从1.86%增加到14.46%,从4.16%增加到32.05%。

表 微量凯氏定氮法测定碳酸铵干扰样品结果



2.2.2碳酸铵对柑橘意大利青霉的抑制研究

柑橘是重要的经济作物之一,在农业经济中具有重要作用,并且其口感适宜、营养丰富、深受人们喜爱。但柑橘采后易受病原菌侵染、尤其是由意大利青霉、指状青霉、酸腐病菌引起的青霉病害、绿霉病害、酸腐病害,是其采后主要病害。因此寻求一种可以控制其主要病害的新型保鲜剂至关重要,而碳酸铵抗菌能力强,可作为目前其他化学杀菌剂的替代物。该研究在探讨6种碳酸盐和碳酸氢盐对柑橘采后主要病原菌的抑菌活性基础上,发现碳酸铵抑菌活性显著,并将其应用到柑橘果实活体保鲜上,进一步探究碳酸铵对意大利青霉可能的作用机制。主要研究内容和结果如下:

采用菌丝生长速率法评价了6种碳酸盐和碳酸氢盐对柑橘采后主要病原菌意大利青霉等的抑制能力,确定其对病原菌的MIC值。其中碳酸盐的抑菌能力强于碳酸氢盐,并以碳酸铵的抑菌能力最强。碳酸铵作用于病原菌,可显著降低孢子活力和芽管伸长,且呈现浓度-效应关系。在浓度分别为0.25 g/L、0.40 g/L、0.80 g/L可完全抑制指状青霉、意大利青霉、酸腐病菌的孢子萌发;对于抑制菌丝生长,碳酸铵对指状青霉、意大利青霉、酸腐病菌的MIC分别为0.4417 g/L、0.8090 g/L、0.8000g/L;在液态培养条件下,碳酸铵的处理也会对病原菌的菌丝生长量具有显著抑制作用。通过选择接种意大利青霉、指状青霉、酸腐病菌于夏橙果实上表明,20g/L的碳酸铵处理下,可显著延缓夏橙病斑直径的扩展。

以意大利青霉为研究对象,分析碳酸铵的作用方式,发现碳酸铵可通过提高培养基pH,在一定程度上抑制病原菌的生长;;平板对扣试验表明碳酸铵挥发出的氨气可抑制病原菌的生长,且当浓度为1.6 g/L时,挥发出的氨气可完全抑制意大利青霉菌丝的生长,揭示挥发氨是抑制固体培养基上病原菌生长的主要原因。液体培养下表明碳酸根离子的胁迫也是碳酸铵抑制病原菌生长的重要原因。孢子萌发法及菌丝转接实验表明碳酸铵延长青霉孢子的萌发时间,对菌丝造成不可修复的伤害。

进一步探究碳酸铵的抑菌作用机制发现:碳酸铵处理菌丝出现褶皱现象。TEM观察发现菌丝细胞形态改变,质壁分离严重,细胞壁加厚。碳酸铵处理改变了菌丝细胞壁的通透性,促进AKP酶释放,提高了细胞壁几丁质含量与葡聚糖酶活,破坏了细胞壁的结构和功能。通过测定细胞膜外pH、细胞组分释放和膜外电导率,发现碳酸铵可影响其排酸能力,破坏细胞膜完整性,促进核酸与蛋白泄露;碳酸铵可降低意大利青霉细胞膜脂组分含量,但对麦角固醇含量无显著性影响。通过对培养基中及菌丝体内蛋白与还原糖含量测定,碳酸铵处理24 h后,菌丝体内的还原糖含量仅为对照的22%,培养基中还原糖和蛋白含量分别为对照的6.94倍和6.45倍,表明碳酸铵处理对菌丝利用外界蛋白与糖完成自身代谢具有显著影响。碳酸铵处理抑制菌丝呼吸,促使粒体膜电位发生紊乱和细胞色素C氧化酶失活,并能积累H2O2。

通过柑橘果实的自然贮藏试验,发现4 g/L的碳酸铵浸泡可显著降低柑橘贮藏期间的发病率,可将发病率由47.78%降至23.33%;无论是贮藏前还是贮藏后,碳酸铵的处理对柑橘外观品质、可溶行固形物、维生素C等营养品质不会造成不良影响。碳酸铵处理可显著提高柑橘果实多酚含量、降低活性氧含量、降低多酚氧化酶活性,表明碳酸铵处理可提高柑橘果实抗氧化能力,延缓其衰老进程,从而降低柑橘贮藏期间发病率。

综上所述,碳酸铵对于柑橘采后主要病害具有良好的控制作用。碳酸铵对病原菌的作用机制在于可以形成挥发氨。碳酸铵对意大利青霉菌丝形态、细胞壁、细胞膜、呼吸及活性氧均有不同程度影响,其中对细胞膜及呼吸影响较为严重,推测碳酸铵可对细胞膜造成严重的损伤及影响菌丝呼吸,从而干扰其能量代谢,造成菌丝死亡。

2.2.3碳酸铵对柑橘酸腐病菌的抑制效果及作用机制

刘寒寒等研究了碳酸铵对柑橘酸腐病菌的抑制效果及作用机制。

实验结果表明,碳酸铵有很强的抑制酸腐病菌作用,在0.8 g/L时可以完全抑制酸腐病菌的孢子萌发和菌丝生长,使用浓度与抑制意大利青霉菌浓度相似。有报道碳酸铵对苹果霉心病的主要病原真菌粉红单端孢(和互隔交联孢菌丝生长具有抑制作用,且最小抑制浓度分别为48.14、33.61mmol/L;碳酸氢铵对葡萄采后灰霉菌的MIC为0.25%,优于其他碳酸盐作用,其抑菌浓度与本实验结果相似。碳酸铵处理还能有效降低番茄采后黑霉病和灰霉病的发生,碳酸铵与可食性涂膜可控制李子褐腐病。

此外实验结果表明,碳酸铵质量浓度在40 g/L时,能完全抑制接种病菌夏橙的酸腐发生。这些结果表明,碳酸铵是一种有潜在应用价值的采后病害的控制方法,值得深入研究。细胞膜对于维持真菌菌丝活性起关键作用,也是多种药物处理的作用位点。前人研究发现许多抑菌物质如抗菌肽、有机酸、植物精油[31]、无机物等对植物病原真菌的作用均会导致其细胞膜通透性和完整性受到伤害,从而起到抑菌作用。Lai Tongfei等发现经过碳酸氢钠处理的扩展青霉的孢子其质膜受到明显的破坏,从而达到抑菌效果,这与本研究结果一致。经过碳酸铵处理的病原菌菌丝,其细胞膜相对渗透性发生了改变,逐步导致离子泄漏,胞内核酸与蛋白释放到胞外,PI染色结果更进一步证明了病原菌的细胞膜完整性受到了影响。活性氧积累是造成细胞膜损伤的原因之一,Shi Xuequn等研究发现当用20 mmol/L硼酸处理芒果炭疽菌,会刺激孢子体内活性氧积累,造成线粒体损坏。本实验结果表明,碳酸铵处理的酸腐病菌菌丝,H2O2积累不十分显著,似乎不是导致膜损伤的主要因素。进一步检测菌丝的呼吸,发现碳酸铵处理对酸腐病菌菌丝呼吸有直接抑制作用,与枯草芽孢杆菌代谢物抑制酸腐病菌菌丝的呼吸有较大的差异,暗示两类物质间的作用方式有差异。推测是由于碳酸铵的加入改变了菌丝的pH值等离子环境,直接抑制呼吸,从而导致细胞维系功能的能量供应不足,进而逐步引发了膜通透性的改变和活性氧代谢的紊乱。孙莉等对碳酸氢铵抑制尖孢镰刀菌生长机制进行研究,发现碳酸氢铵对尖孢镰刀菌的抑制作用与pH值有关,但不完全取决于pH值。实验室前期研究发现,在酸性条件下,碳酸铵对意大利青霉并无明显的抑制作用。至于碳酸铵对酸腐菌的抑制机制是否与提高pH值有关,及其深层次的作用机制,还有待进一步探究。

综上,碳酸铵对柑橘酸腐病菌的孢子萌发及菌丝生长具有较强的抑制作用;其通过抑制菌丝呼吸、孢子活性影响膜完整性和渗透性,干扰菌丝代谢,从而达到抑菌效果。碳酸铵有望进一步开发为防治柑橘酸腐病的方法。

图1 碳酸铵处理对酸腐病菌孢子萌发及芽管伸长的影响





图 2 碳酸铵处理对酸腐病菌菌丝生长的影响





图 3 不同质量浓度的碳酸铵对酸腐病菌孢子活力的影响





图 4 碳酸铵处理对酸腐病菌菌丝呼吸速率的影响





图 5 碳酸铵处理对酸腐病菌菌丝膜渗透性的影响







3限量

表 碳酸铵的最大使用量

食品分类号食品名称最大使用量(g/kg)备注
07.03饼干按生产需要适量使用2017年2月28日由关于食品添加剂新品种碳酸铵、6-甲基庚醛等9种食品用香料新品种和焦亚硫酸钠等2种食品添加剂扩大使用范围的公告(2017年第1号)增补。
07.03.01夹心及装饰类饼干按生产需要适量使用2017年2月28日由关于食品添加剂新品种碳酸铵、6-甲基庚醛等9种食品用香料新品种和焦亚硫酸钠等2种食品添加剂扩大使用范围的公告(2017年第1号)增补。
07.03.02威化饼干按生产需要适量使用2017年2月28日由关于食品添加剂新品种碳酸铵、6-甲基庚醛等9种食品用香料新品种和焦亚硫酸钠等2种食品添加剂扩大使用范围的公告(2017年第1号)增补。
07.03.03蛋卷按生产需要适量使用2017年2月28日由关于食品添加剂新品种碳酸铵、6-甲基庚醛等9种食品用香料新品种和焦亚硫酸钠等2种食品添加剂扩大使用范围的公告(2017年第1号)增补。
07.03,04其他饼干按生产需要适量使用2017年2月28日由关于食品添加剂新品种碳酸铵、6-甲基庚醛等9种食品用香料新品种和焦亚硫酸钠等2种食品添加剂扩大使用范围的公告(2017年第1号)增补。


4检测和标准

食品添加剂新品种碳酸铵

英文名称:Ammonium Carbonate

功能分类:膨松剂

范围

本质量规格适用于以氨气、二氧化碳和水蒸气为原料,经吸收、结晶、分离、干燥冷却制得的食品添加剂碳酸铵。

4.1技术要求

4.1.1感观要求

表1 感观要求

项目要求检验方法
色泽白色

取适量试样,置于50mL烧杯中,在自然光线下,观察其色泽和状态,用手轻轻地扇动,使少量气体飘入鼻孔,嗅其气味。
气味刺激性氨味
状态结晶粉末


4.2检验方法

4.2.1相关标准规定

安全   

本质量规格的检测方法中使用的部分试剂具有腐蚀性,操作者须小心谨慎。如溅到皮肤上应立即用水冲洗,严重者应立即治疗。使用有挥发性的有机溶剂的操作应在通风橱中进行。使用易燃品中,严禁使用明火加热。

一般规定

本质量规格所用试剂和水,在没有注明其他要求时,均指分析纯的试剂和GB/T 6682中规定的三级水。试验中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601GB/T 602和GB/T 603的规定制备。试验中所用溶液在未注明用何种溶剂配制时,均指水溶液。

4.2.2鉴别试验

4.2.2.1碳酸铵的鉴别

试剂和材料:盐酸溶液:1+1 红色石蕊试纸

原理:试样中加入盐酸溶液即产生气泡

热试验:试样受热分解,产生的蒸汽可以使湿润的红色石蕊试纸变蓝

4.2.2.2含量的测定

原理:试样溶于水,以甲基橙为指示剂,用盐酸标准滴定溶液滴定,测定氨的含量。

试剂和材料:盐酸标准滴定溶液:c(HCl)=1mol/L 甲基橙指示液

分析步骤:称取1.5-2.0 g试样,精确至0.0001 g,置于250 mL锥形瓶中,加100 mL水使其全部溶解。滴加3滴甲基橙指示液,用盐酸标准滴定溶液滴定至试验溶液由黄色变为橙色。

结果计算

含量(以NH3计)的质量分数w1按式(A.1)计算:



V――滴定试验溶液所消耗的盐酸标准滴定溶液体积,单位为毫升(mL);

C――盐酸标准滴定溶液的浓度,单位为摩尔每升(mol/L),

m――试样的质量,单位为克(g);

M――氨的摩尔质量,单位为克每摩尔(g/mol)[M(NH3)=17];

1000—―换算系数。

试验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不大于0.2%。

4.2.2.3氰化物的测定

原理:在酸性介质中加入硝酸银溶液,与氯离子产生白色氯化银悬浮液,与标准比浊溶液比较。

试剂和材料

硝酸溶液:质量分数10%

硝酸银溶液:17g/L

碳酸钠

氰化物标准溶液:1mL溶液含氯10ug。

称取165 mg氯化钠至100 mL容量瓶中,加蒸馏水至刻度线,配制成氯化物标准储备液。吸取氯化物标准储备液10 mL至 1000 mL容量瓶中,加蒸馏水至刻度线。此溶液每毫升含0.01 mg 氯。

分析步骤:称取0.5 g试样,置于50 mL烧瓶中,加10 mL蒸馏水使之溶解。加入 5 mg碳酸钠,置于蒸气浴上缓慢蒸发至干。然后用30 mL蒸馏水将残渣溶解,用硝酸酸化,并加1 mL硝酸银溶液,用水稀释至刻度,摇匀,放置5 min后进行比浊。其浊度不应超过标准比浊溶液产生的浊度。

标准比浊溶液:取1.5 mL氯化物标准溶液置于50 mL 的比色管中,加40 mL蒸馏水,用硝酸酸化,并加1 mL硝酸银溶液,用水稀释至刻度,摇匀。

注意试验溶液避光。

4.2.2.4硫酸盐的测定

原理:在试样中加入过氧化氢,使试样中的各种含硫离子转变为硫酸根离子,在酸性介质中钡离子与硫酸根离子产生白色硫酸钡悬浮微粒,与标准比浊溶液比较。

试剂和材料

过氧化氢:质量分数30%

盐酸:质量分数10%

碳酸钠

氯化钡溶液:质量分数10%

硫酸盐标准溶液

称取48 mg无水硫酸钠至100 mL容量瓶中,加蒸馏水溶解,并加至刻度线,配制成硫酸盐标准储备液。吸取硫酸盐标准储备液10 mL至1000 mL容量瓶中,加蒸馏水至刻度线。此溶液每毫升含 10ug硫酸根离子。

分析步骤:称取4g试样,置于50 mL烧瓶中,加40 mL蒸馏水溶解。加10mg碳酸钠和1mL 30%的过氧化氢,置于蒸气浴上缓慢蒸发至干。然后用40 mL蒸馏水将残渣溶解,用盐酸酸化,并加3mL氯化钡溶液,用水稀释至刻度,摇匀,放置10 min后进行比浊。其浊度不应超过标准比浊溶液产生的浊度。

标准比浊溶液:取 20 mL硫酸盐标准溶液置于50 mL烧瓶中,加20 mL蒸馏水并用盐酸酸化。加 3 mL氯化钡溶液,用水稀释至刻度,摇匀。

4.2.2.5不挥发物的测定

原理:试样置于蒸发皿中,于蒸汽浴上蒸发至干,于电热恒温干燥箱中干燥至质量恒定后称量不挥发物质量。

仪器和设备

瓷蒸发皿50mL

电热恒温干燥箱

分析步骤:称取约4g试样,精确至0.0002 g,置于预先于105℃~110℃下干燥至质量恒定的瓷蒸发皿中,加10 mL水。在蒸汽浴上蒸发至干。置于电热恒温干燥箱中,于105℃~110℃下干燥1h,然后放入干燥器中冷却,称重。

不挥发物含量的质量分数w2按式(A.2)计算:



式中:

m1――干燥后不挥发物和蒸发皿的质量,单位为克(g);

m2――蒸发皿的质量,单位为克(g);

m3――试样的质量,单位为克(g);

实验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果绝对差值不大于0.005%。

碳酸铵的用途广泛,但是作为食品添加剂,在国内国家食品安全标准中尚未有其标准,可能是因为碳酸铵的纯品在空气中会逐渐转变为碳酸氢铵,碳酸铵不稳定。

JECFA上有碳酸铵的相关标准,在第26届JECFA(1982)上编制,发表在FNP 25(1982)和FNP 52(1992)上。

JECFA标准中ammonium carbonate(碳酸铵)的定义是由不同比例的氨基甲酸铵、碳酸铵和碳酸氢铵组成。NH3含量不低于30.0%,不超过34.0%  描述白色粉末或坚硬、白色或半透明的晶体块,带有气味  氨。在暴露于空气中时,它变得不透明,并最终被转换  由于水分的流失,形成白色多孔块状物或粉末(碳酸氢铵)  氨和二氧化碳。功能包括作为酸度调节剂、增稠剂等等。

参考文献



[1] 袁炳秋吕媛马钰. 尿素、氯化铵、碳酸铵对牛奶样品微量凯氏定氮法的干扰[J]. 南师范大学医学院 长沙赢润生物技术有限公司. 湖南师范大学自然科学学报. 2010,33(01)

[2] 刘寒寒 碳酸铵对柑橘意大利青霉的抑制研究 华中农业大学

[3] 刘寒寒杨书珍李哲碳酸铵对柑橘酸腐病菌的抑制效果及作用机制[J]. 食品科学. 2021,42(03)

[4] 食品伙伴网 食品数据库查询

[5] GB 2760-2014 食品安全国家标准 食品添加剂使用标准

[6] Additive-021
为您推荐
您可能想找: 无机试剂 询底价
专属顾问快速对接
立即提交
可能感兴趣
手机版: CNS_06.009_碳酸铵
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴