主题:【原创】燃料电池质子交换膜高低温性能测试中替代环境试验箱的TEC半导体温度控制解决方案

浏览0 回复0 电梯直达
上海依阳
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
摘要:针对燃料电池质子交换膜高低温退化机理表征,基于德国慕尼黑工业大学团队提出的替代环境试验箱的TEC半导体制冷温控方案及其功能指标,本文给出此方案具体实施内容的补充,详细介绍了用于TEC半导体制冷温控系统的PID调节器和大功率电源驱动器。

燃料电池质子交换膜高低温性能测试中的TEC温度控制解决方案,600,403



1. 问题的提出

        燃料电池聚合物电解质膜或质子交换膜(PEM)的性能和耐久性对工作温度十分敏感,为了研究退化机理和考核退化性能,必须在较宽的高低温环境下对质子交换膜进行各种性能测试。目前测试中所采用的高低温测试环境大多为环境试验箱,在环境试验箱中进行测试试验除了设备昂贵和耗时长之外,关键是环境试验箱的测试环境与实际应用相比不具有代表性,这主要是因为电池在低温启动以及正常运行的实际使用期间PEM表面是不均匀的温度分布,而这种温度不均匀性会导致电池的性能下降和退化,故环境试验箱温度控制方法缺乏模拟PEM表面温度梯度的能力。

        为了准确模拟出质子交换膜实际使用过程中的温度不均匀性分布以及相应的高低温交变试验环境,德国慕尼黑工业大学的研究团队[1]提出了采用TEC半导体制冷的技术方案,整个测试装置结构如图1所示。

质子交换膜退化性能高低温试验装置结构示意图,690,469

图1 质子交换膜退化性能高低温试验装置结构示意图[1]



        图1所示测试系统的核心部分——TEC半导体制冷型温控装置的详细结构如图2所示[2]。

TEC温控装置结构示意图

图2 TEC温控装置结构示意图[2]



        从文献[2]中的描述可知,TEC温控装置具备的功能和相关指标如下:

        (1)上下布置有两组TEC制冷片,分别用两个PID控制器进行控温。控制器具有可编程控制能力,以实现-10℃~80℃之间的温度交变控制。

        (2)温控装置加热时的温度变化速率为24℃/min,冷却时的温度变化速率可达到17℃/min,整个温区内的控温精度可达到±0.3℃。

        (3)针对50平方厘米和285平方厘米两种规格的质子交换膜测试,配备了不同结构、规格尺寸和数量的TEC模组,总功率分别为2×240W和2×1280W。

        (4)由于质子交换膜高低温退化性能测试装置还需进行加载压力、气压压力、气体流速等参数的自动控制,因此PID温控器具有通讯能力,以便上位机进行多参数的设置和控制。

        (5)除了上述温控精度和动态变化性能之外,采用了TEC半导体制冷模组的温控装置可实现高达70℃的纵向温度梯度,由此扩大了电池测试的范围,且使用较低成本和较小空间的方式来模拟不同的扰动效应或进行温度交变试验,

        针对上述TEC温控装置具备的功能和相关指标,本文将给出更具体的实施方案,由此给出燃料电池质子交换膜高低温退化机理表征测试装置中温控系统的全貌。

2. 解决方案

        针对上述TEC温控装置具备的功能和相关指标,本文给出的具体实施方案如图3所示。

TEC温控装置具体实施方案示意图

图3 TEC温控装置具体实施方案示意图



        图3所示的实施方案具体包含以下几部分内容:

        (1)执行机构:为了实现TEC的加热制冷功能,除了需要对TEC模组的加载电流进行自动调节之外,还需在调节过程中能自动改变电流方向,为此实施方案中配备了双向电源驱动器。双向电源驱动器接收加热和制冷控制信号,并根据控制信号大小和方向输出相应的工作电流。另外,根据所配备的TEC模组功率配备相应的双向电源驱动器以满足额定电流要求。

        (2)温度传感器:温度传感器是决定温度控制精度的关键因素之一,因此本方案中配置了铂电阻温度计,使得温度传感器的温度分辨率能达到0.05℃以及测温精度能达到0.1~0.2℃。

        (3)高精度PID控制器:决定温度控制精度的另一个关键因素是温度控制器的数据采集精度、控制算法和控制输出精度。为此,在本解决方案中采用了目前控制精度较高的VPC2021-1系列的工业用PID程序调节器,除具有不超过96mm×96mm×87mm的小巧尺寸外,关键是此PID调节器的模数转换AD为24位、数模转换DA为16位、双精度浮点运行运算以及0.01%的最小输出百分比,并可对控制程序进行编辑设计,适合质子交换膜高低温退化试验在全温度量程内交变温度的程序控制。同时,此调节器采用了高级无超调PID控制模式,并具有PID参数自整定功能,结合高精度的数据采集和控制输出,可实现十分精细的温度变化调节和控制。另外,此调节器附带功能强大的计算机软件,通过计算机运行此软件可快速进行PID控制器的远程设置和运行操作,同时能图形化的显示和记录所有设置参数、控制程序曲线和温度控制变化曲线。

        总之,本文所述解决方案中所采用的TEC高低温温控系统,已经成为高精度可编程温度控制的一种标准和通用性方案,完全适用于质子交换膜高低温退化表征试验过程中的温度精密控制。

3. 参考文献

[1] Sabawa J P, Bandarenka A S. Investigation of degradation mechanisms in PEM fuel cells caused by low-temperature cycles[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15951-15964.

[2] Sabawa J P, Haimerl F, Riedmann F, et al. Dynamic and precise temperature control unit for PEMFC single‐cell testing[J]. Engineering Reports, 2021, 3(8): e12345.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

为您推荐
您可能想找: 其它试验箱 询底价
专属顾问快速对接
立即提交
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴