主题:【资料】CNS_08.011_二氧化钛

浏览0 回复1 电梯直达
enhua
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
食品添加剂—二氧化钛

庄怡

食品添加剂—二氧化钛

摘要:高纯度的二氧化钛又称为白色素,作为食品添加剂广泛应用于糖果包衣,凉果,果冻等需要增白的食品中。其制备方法主要有氯化法和硫酸法。2017年颁布的GB2760-2014对二氧化钛作为食品添加剂在食品中的含量作出了规定。常用的检测方法有电感耦合等离子-原子发射光谱法、二安替比林甲烷比色法和X射线荧光光谱法。

关键词:二氧化钛、钛白粉、制备方法、检测方法、用量要求

一、引言

二氧化钛广泛应用于食品、化妆品、油漆、橡胶、涂料、塑料、纸张、墨水和纤维等领域。高纯度的食用二氧化钛又称为白色素,它是较高分性非包膜处理的锐钛型二氧化钛,作为食品添加剂主要起到着色剂和增白剂的作用,用于提高食物的光泽度和白度。它还可以与其他素色配合使用可产生柔和的颜色[1]。其广泛应用于糖果包衣,凉果,果冻,口香糖,无甜味剂型固体饮料和浓缩型固体饮料中以及蜜饯,果酱,沙拉酱,蛋黄酱等需要增白的食品中[2]。此外,有些商家还利用二氧化钛来增白火锅汤底,达到段时间熬出白色高汤的效果[3]。2021年5月6日,欧洲食品安全局宣布:尽管二氧化钛的毒性作用尚无定论,但不能排除二氧化钛的遗传毒性[4],因此其需要控制在一定的适当的剂量下才能保证其安全性。

二、理化性质

二氧化钛又名钛白,是固体或粉末状的无机物,无毒无味,在室温下呈白色,加热时呈浅黄色。其化学式为TiO2,分子量为79.9,熔点为1840 ℃,沸点为2900 ℃,密度为4.26 g/cm3。在自然界中有三种晶型,金红石型、锐钛矿型和板钛矿型。二氧化钛不溶于水或者稀酸,微溶于碱,属于两性氧化物。在强碱和强酸溶液中均可缓慢溶解。其与碱反应生成偏钛酸盐,与热、浓的硫酸和盐酸反应分别生成TiOSO4和TiOCl2和H2O。其还具有耐久性、着色力强、无毒等优点,同时还具有耐化学腐蚀性、热稳定性、抗紫外线分化及折射率高的良好性能。

三、制备方法

在工业上,二氧化钛的制备方法主要有氯化法和硫酸法[5]。

1、氯化法

氯化法的工艺流程主要分为氯化、氧化、后处理三个部分。金红石或富钛原料经粉碎干燥后与石油焦混合,在沸腾炉中与氯气在925~1010 ℃的高温条件下发生化学反应,经分离、冷凝、过滤得到纯度较高的四氯化钛。然后与相关制剂一并加入到氧化反应器中进行反应,生成带有二氧化钛颗粒的气体,经氯气冷却后再用分离器和收集器对二氧化钛进行脱氯处理。最后,经过复杂的后处理流程包括打浆和研磨、表面处理与过滤洗涤、喷雾干燥、微粉碎等操作得到高质量的钛白粉[6]。

其基本反应为

TiO2 + C + 2Cl2 → TiCl4 + CO2

TiO2 + 2C + 2Cl2 → TiCl4+ 2CO

TiCl4 + O2 → TiO2 + Cl2

氯化法以气相反应为主,具有能耗低、氯气可循环使用和自动化程度高的优点。

2、硫酸法

该法是利用硫酸将钛铁矿分解为多孔固相产物,产物经酸性水浸取后,再经沉降除杂分离、水洗煅烧等一系列工序后得到成品二氧化钛。其流程主要分为四个阶段:酸解阶段、浸取阶段、水解阶段和煅烧阶段[7]。各阶段主要的化学反应式如下所示:

酸解阶段:FeTiO3 + H2SO4 → Ti(SO4)2 + FeSO4 + H2O

FeTiO3 + H2SO4 → TiOSO4 + FeSO4 + H2O

浸取阶段:Ti(SO4)2 + H2O → TiOSO4 + H2SO4

水解阶段:TiOSO4 + H2O → H2TiO3↓ + H2SO4

煅烧阶段:H2TiO3 → TiO2 + H2O

硫酸法制备钛白粉历史悠久,技术成熟,其主要问题为污染物的处理。

四、用量要求

根据GB2760-2014[8]规定,二氧化钛作为食品添加剂的使用范围及添加量如下表所示:

食品名称最大使用量/(g/kg)备注
果酱5.0 
凉果类10.0 
话化类10.0 
干制蔬菜(仅限脱水马铃薯)0.5 
熟制坚果与籽类(仅限油炸坚果与籽类)10.0 
可可制品、巧克力和巧克力制品,包括代可可脂巧克力及制品2.0 
胶基糖果5.0 
除胶基糖果以外的其他糖果10.0 
糖果和巧克力制品包衣按生产需要适量使用 
装饰糖果(如工艺造型,或用于蛋糕装饰)、顶饰(非水果材料)和甜汁5.0 
调味糖浆5.0 
蛋黄酱、沙拉酱0.5 
固体饮料按生产需要适量使用 
果冻10.0如用于果冻粉,按冲调倍数增加使用量
膨化食品10.0 
其他(仅限饮料浑浊剂)10.0 g/L 
其他(仅限魔芋凝胶制品)2.5 


五、检测方法及原理

1、电感耦合等离子-原子发射光谱法

(1)检测原理

电感耦合等离子-原子发射光谱法(ICP-AES)是利用元素的原子在能量的作用下发射出特征谱线而进行元素的定性和定量分析的一种方法。气态原子或离子的核外层电子当获取足够的能量后,就会从基态跃迁到各种激发态,处于各种激发态不稳定的电子(寿命<10-8 s)迅速回到低能态时,若以光辐射的形式释放能量,既得到原子发射光谱。每种元素都有其特征的原子结构,其核外电子在不同能级间跃迁的能量是一定的,因此可以发射出具有特征波长的谱线。通过检测特征光谱线存在否,确证某元素可否存在。一般利用2~3根原子线、离子线的第一共振线、最灵敏线、最后线、分析线进行定性分析。在测量条件相同、自吸现象较弱的情况下,谱线的强度与待测元素的浓度呈正比,这是其定量依据。

电感耦合等离子体(ICP)激发光源具有温度高、检出能力强、稳定性好、基体效应小和定量分析线性范围宽等特点,多用于液体试样的光谱分析。当高频发生器接通电源后,高频电流通过感应线圈产生交变磁场。在高压电火花触发下,Ar气发生电离,在高频交流电场的作用下,带电粒子高速运动、碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流,产生的高温又将气体加热、电离,在管口形成稳定的等离子体焰炬。

(2)检测步骤

在GB 5009.246-2016[9]中规定,试样的分析步骤可分为试样的前处理、空白试验、标准曲线的绘制、测定和分析结果的表述这5个过程。

在试样的前处理中,对于固体样品,应当取代表性的可食用部分,捣碎成匀浆。通过普通湿法消解或者微波湿法消解处理至澄清溶液。普通湿法消解是将约5 g(精确到0.001 g)的试样与数粒玻璃珠、15~20 mL的混合酸[高氯酸+硝酸(1+9)]混合与锥形瓶中,在电炉上缓慢消解至澄清,在盖上表面皿的情况下小心滴加硝酸以消除碳化产生的黑色。继续加热至溶液剩余2~3 mL,冷却后加入1 g硫酸铵和5 mL硫酸,煮沸至澄清,继续煮至高氯酸白烟被赶尽,冷却后转移至100 mL容量瓶,稀释定容。微波消解法是将0.2~0.5 g(精确到0.0001 g)试样与2.5 mL硝酸和2.5 mL硫酸加入到微波消解罐中进行消解。结束后冷却至室温,转移到50 mL容量瓶稀释定容混匀。若存在无法消解的沉淀,应采用普通湿法消解进行处理。

在标准曲线的绘制和测定中,可采用的Ti的分析线波长为336.122 nm、334.941 nm、337.280 nm。将ICP-AES光谱仪调至最佳条件,测定系列标准溶液的发射光谱强度,以钛的浓度为横坐标,发射光的强度为纵坐标绘制标准工作曲线。在相同的测定条件下,测定试样溶液和空白溶液的发射光强度,由标准工作曲线求的待测试液中钛的浓度。

分析结果的表述如下:



X  —试样中二氧化钛的含量(mg/kg)

    c1  —由标准曲线得到的试样溶液中钛的浓度(μg/mL)

c0  —由标准曲线得到的空白溶液中钛的浓度(μg/mL)

V —试样溶液的定容体积(mL)

f —试样溶液的稀释倍数

m  —试样质量(g)

1.6681 —1 g的钛相当于1.6681 g二氧化钛

(3)发展

郝大情[10]等在对消解体系的选择上做出了改进。在对面粉、膨化食品、油炸食品以及口香糖进行消解时,即使补加数倍混合酸仍然无停止地出现碳化现象难以达到消解的终点。作者采用硝酸:高氯酸为4:1的混合酸进行消解,在最佳光谱条件下,用电感耦合等离子体—原子发射光谱仪进行食品中二氧化钛的测定,显示出快速、准确、灵敏度高、良好的重现性及稳定性的优点,对食品中不同浓度二氧化钛含量的测定均适用。

纳米二氧化钛相对于常规尺度二氧化钛使用可显著改善食品品质和口感,在替代二氧化钛应用于食品方面优势显著。在国标中仅对二氧化钛在食品中的最大使用量作出了规定而未对限定其颗粒粒径的大小,近来有研究表明食品级二氧化钛纳米颗粒能够显著改变小鼠的肠道菌群,诱导引起结肠炎症并影响肝脏蛋白质的表达[11]。王丹红[12]等采用20%强碱四甲基氢氧化铵处理样品的方法和单颗粒-电感耦合等离子质谱法(SP-ICP-MS)来测定食品中纳米二氧化钛粒度分布、数量浓度和溶解钛离子的含量,为有效规范、检测食品级二氧化钛颗粒粒径的大小提供了一种有效的手段。

2、二安替比林甲烷比色法

(1)检测原理

分子中的电子,总是处于某种运动状态,具有 一定的能量,属于一定的能级。当具有一定能量的 光子作用于物质的分子时,处于基态的电子吸收了光子的能量,从低能态跃迁至高能态。紫外-可见吸收光谱是由分子的价电子跃迁所致。物质对光的吸收,在一定的实验条件下遵循朗伯-比尔定律,在测量条件相同的情况下,物质的吸光度值与待测物的浓度呈正比。紫外可见分光光度法具有灵敏度高、准确度高、方法简便和仪器设备简单的优点。

试样经酸消解后,在强酸介质中钛与二安替比林甲烷形成黄色络合物,于紫外分光光度计425 nm处测量其吸光度,采用标准工作曲线法来对未知试样的钛含量进行定量分析。同时,加入抗坏血酸以消除三价铁的干扰。

(2)检测步骤

在GB 5009.246-2016中规定,该法可分为试样的处理、空白试验、显色、标准工作曲线的绘制及测定这五个步骤。

在试样的处理中,其消解方法同普通湿法消解。消解后,移取适量定容后的溶液于 50 mL容量瓶中,加入5 mL抗坏血酸溶液,再依次加入 14 mL盐酸溶液(1+1),6 mL二安替比林甲烷溶液,稀释定容,摇匀后静止。采用基准试剂或光谱纯的二氧化钛配置标准系列溶液,以显色后的标准空白溶液为参比,用1 cm的比色皿,在425 nm波长处用紫外分光光度计测定显色后的标准系列工作液的吸光度值,以浓度为横坐标,相应的吸光度为纵坐标绘制标准工作曲线。在相同的测定条件下,测定显色后的试样溶液和空白溶液的吸光度,由标准工作曲线得到待测试样中钛的浓度。分析结果的表述如下:



X  —试样中二氧化钛的含量(mg/kg)

    c  —由标准曲线得到的显色后试样溶液中钛的浓度(μg/mL)

c0  —由标准曲线得到的显色后空白溶液中钛的浓度(μg/mL)

V1—试样消解后初次定容的体积(mL)

50 —显色后试样溶液的定容体积(mL)

m  —试样质量(g)

V2—显色时移取试样溶液的体积(mL)

1.6681 —1 g的钛相当于1.6681 g二氧化钛

(3)发展

相比于电感耦合等离子-原子发射光谱法,该法具有成本低,方法简便的特点,然而在前处理的过程中往往出现白色沉淀,影响实验的准确度。陆文婵[13]等分别从不同比例的混合酸浓度、不同的消解时间、 加入不同显色剂的量、添加不同硫酸铵与硫酸的量与改变消解温度等方面对测定食品中二氧化钛时产生白色沉淀的原因进行了探究与验证,确定了白色沉淀的成分主要为硫酸盐,原因为消解时的温度过低导致的消解不完全。

3、X射线荧光光谱法

当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,内层电子在足够能量的X射线照射下脱离原子的束缚,成为自由电子,而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃入内层空穴所释放的能量以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差[14]。不同元素的荧光X射线具有其特定的波长,这是其定性基础。其进行定量分析的依据是元素的荧光X射线强度与试样中该元素的含量成正比。

周陶鸿[15]等建立了X射线荧光光谱法测定面粉、糖果、果冻、鱼丸等食品中二氧化钛的含量。在样品的处理中,针对固体试样,采用直接干燥后粉碎或加入分散剂粉碎;针对果冻等胶状试样,采用直接均质或加分散剂均质。同时,应用内标元素Nd校正基体和水分散失带来的影响。采用标准曲线法,以净峰面积和浓度值进行曲线拟合。本方法操作简单, 分析速度快, 适合批量食品中二氧化钛的快速检测。

六、结语

根据我国食品卫生法(1995年)的规定,食品添加剂是为改善食品等品质,以及为防腐和加工工艺的需要而加入食品中的人工合成或者天然物质[16]。其作用有:保持、提高食品的营养价值;便于食品的加工运输;提高加工食品的质量特性;为特殊群体消费者提供需求[17]。钛白粉的加入可以增加食物的光泽和白度,提高人们的食欲。但纯度不足的钛白粉中往往存在一些重金属杂质(例如砷),滥用钛白粉增加了这些杂质危害人身体健康的风险。尽管国家已出台相关标准对绝大多数食品添加剂用量范围作出规定,但是一些商家为了谋取利益过量或超范围地使用食品添加剂的时间屡屡发生。对于食品添加剂的监管不仅需要标准、法律的约束,也需要食品生产者加强对自身的约束。
参考文献

[1]李英杰,白明.二氧化钛的特性及在食品中的应用[J].食品安全导刊,2010(08):58-59.

[2]符靓,唐有根.电感耦合等离子体质谱法测定食品添加剂中的微量元素[J].食品工业科技,2012,33(09):362-365.

[3]刘超,刘春平.二安替比林甲烷法测定火锅底汤(料)中的二氧化钛[J].轻工科技,2018,34(05):29-31.

[4] https://www.sohu.com/a/468481376_120574164,2021.07.05

[5]刘锦新,朱亚先,高飞.无机元素化学,科学出版社,2005年

[6]马艳萍,刘红星,和奔流,赵波.氯化法钛白粉的生产工艺探究[J].云南化工,2019,46(06):94-95+98.

[7]廖鑫,杨绍利,马兰,李宏,黄栋.钛白粉制备技术的研究及发展[J].粉末冶金技术,2019,37(02):147-152.

[8] GB 2760–2014 食品安全国家标准食品添加剂使用标准.

[9] GB 5009. 246–2016 食品安全国家标准食品中二氧化钛的测定.

[10]郝大情,杨瑞春,卢素格,银恭举.ICP-AES测定食品中二氧化钛的方法研究[J].中国卫生检验杂志,2013,23(08):1849-1851.

[11] Cao, X., Han, Y., Gu, M., Du, H., Song, M., Zhu, X., Ma, G., Pan, C., Wang, W., Zhao, E., Goulette, T., Yuan, B., Zhang, G., Xiao, H., Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Non-Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. Small  2020,16,2001858.

[12]王丹红,唐庆强,陈祥明,唐环宇,叶家星,吴文晞.食品中纳米二氧化钛的单颗粒-电感耦合等离子质谱法表征及其测定[J].福建分析测试,2018,27(05):1-5.

[13]陆文婵,梁景文,陈紫云,郭雷.测定食品中二氧化钛时产生白色沉淀的原因分析[J].现代农业科技,2019(18):188-189.

[14]https://baike.baidu.com/item/X射线荧光光谱法/3521133?fr=aladdin,2021.07.05

[15]周陶鸿,宋政,胡家勇,姚晓帆,黄徽.X射线荧光光谱法快速检测食品中的二氧化钛[J].食品安全质量检测学报,2021,12(01):50-55.

[16] https://baike.baidu.com/item/食品添加剂/1680288,2021.07.05

[17]刘佳妮.食品添加剂与食品安全[J].现代食品,2020(05):152-154.
为您推荐
您可能想找: 其它化学试剂 询底价
专属顾问快速对接
立即提交
123
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴