主题:【分享】研究消化系统疾病模型新工具-肠类器官

浏览0 回复0 电梯直达
义翘神州
结帖率:
100%
关注:0 |粉丝:0
新手级: 新兵
  言

现代医学的发展将会获得越来越复杂的数据,时间和空间上高度动态的系统数据将会对诊断、治疗和预测结果提供帮助。类器官有望成为治疗各种胃肠道疾病的高价值系统,用于模拟免疫反应、代谢机制、肿瘤发生与发展、感染性消化道疾病等。截止到2023年7月中旬,全球类器官的临床研究超过170例,其中消化系统疾病的研究有70多例。为了助力类器官的培养和研究,义翘神州可提供自主研发的人源EGF、NOG、RSPO1等重组细胞因子产品。

01肠类器官研究进展

肠类器官(Intestinal organoids)从人类肠道组织或干细胞中分离和培养构建。通过在适当的培养条件下处理这些细胞,可以形成三维的肠道结构。当充分成熟时,人类肠道类器官会重现出芽的隐窝和绒毛结构域,分别含有增殖的ISC和祖细胞,以及分化的肠上皮细胞、杯状细胞和潘氏细胞。

?义翘神州细胞因子产品数据

Human RSPO1 Protein,
Cat: 11083-HNAS



高纯度:

高纯度


≥ 95 % as determined by SDS-PAGE.  ≥95% as determined by SEC-HPLC.



高批间一致性

高批间一致性


Induce activation of ?catenin response in a Topflash Luciferase assay using HEK293T human embryonic kidney cells.



Human Noggin Protein, Cat: 10267-HNAH



高纯度:

高纯度


≥95% as determined by SDS-PAGE. ≥95% as determined by SEC-HPLC.



高批间一致性

高批间一致性


Inhibit BMP4-induced alkaline phosphatase production by MC3T3E1 mouse preosteoblast cells.


肠类器官培养相关的细胞因子
货号靶点内毒素纯度及活性
10605-HNAEEGF<5 EU/mg≥95%, Active
GMP-10605-HNAEEGF<5 EU/mg≥95%, Active
GMP-10014-HNAEFGF2<10 EU/mg≥95%, Active
10210-H07EFGF7<0.01 EU/μg≥95%, Active
10267-HNAHNOG<10 EU/mg≥95%, Active
10007-HNAHCSF3<10 EU/mg≥95%, Active
10236-H02HEPO<10 EU/mg≥95%, Active
10573-HNAEFGF10<5 EU/mg≥95%, Active
11858-HNAEIL3<5 EU/mg≥95%, Active
GMP-11858-HNAEIL3<5 EU/mg≥95%, Active
10451-HNAEKITLG<10 EU/mg≥95%, Active
11066-HNAHVEGFA<10 EU/mg≥95%, Active
10424-H08HVTN<10 EU/mg≥95%, Active
10429-HNAHINHBA<10 EU/mg≥95%, Active
GMP-10429-HNAHINHBA<10 EU/mg≥95%, Active
10463-HNASHGF<0.01 EU/μg≥95%, Active
11083-HNASRSPO1<10 EU/mg≥95%, Active
11648-H08HJAG1<10 EU/mg≥95%, Active
10452-HNAHOSM<10 EU/mg≥95%, Active
GMP-10452-HNAHOSM<5 EU/mg≥95%, Active
10573-HNAEFGF10<5 EU/mg≥95%, Active
GMP-10573-HNAEFGF10<5 EU/mg≥95%, Active


SDS-PAGE & SEC-HPLC





【参考文献】

1. Taelman, J., Diaz, M., & Guiu, J. Human Intestinal Organoids: Promise and Challenge. Frontiers in cell and developmental biology, 2022. https://doi.org/10.3389/fcell.2022.854740

2. Kakni, P., et al. PSC-derived intestinal organoids with apical-out orientation as a tool to study nutrient uptake, drug absorption and metabolism. Frontiers in molecular biosciences, 2023. https://doi.org/10.3389/fmolb.2023.1102209

3. Rubert, J., et al. Intestinal Organoids: A Tool for Modelling Diet-Microbiome-Host Interactions. Trends in endocrinology and metabolism: TEM, 2022. https://doi.org/10.1016/j.tem.2020.02.004

4. Günther, C., et al. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut, 2022. https://doi.org/10.1136/gutjnl-2021-326560

5. Wang, Q., et al. Applications of human organoids in the personalized treatment for digestive diseases. Signal transduction and targeted therapy, 2022. https://doi.org/10.1038/s41392-022-01194-6

6. Abud, H. E., et al. Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Frontiers in cell and developmental biology, 2021. https://doi.org/10.3389/fcell.2021.685665

7. Krause, C., Guzman, A., & Knaus, P. Noggin. The international journal of biochemistry & cell biology, 2011.

https://doi.org/10.1016/j.biocel.2011.01.007

8. Li, Y., et al. Bach2 Deficiency Promotes Intestinal Epithelial Regeneration by Accelerating DNA Repair in Intestinal Stem Cells. Stem cell reports, 2021. https://doi.org/10.1016/j.stemcr.2020.12.005

9. Chen, L., et al. Molecular Biomarker of Drug Resistance Developed From Patient-Derived Organoids Predicts Survival of Colorectal Cancer Patients. Frontiers in oncology, 2022. https://doi.org/10.3389/fonc.2022.855674

10. Tang, M., et al. Evaluation of B7-H3 Targeted Immunotherapy in a 3D Organoid Model of Craniopharyngioma. Biomolecules, 2022. https://doi.org/10.3390/biom12121744

11. Ruan, D., et al. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell reports. Medicine, 2022. https://doi.org/10.1016/j.xcrm.2022.100849

为您推荐
您可能想找: 气相色谱仪(GC) 询底价
专属顾问快速对接
立即提交
可能感兴趣
猜你喜欢最新推荐热门推荐更多推荐
品牌合作伙伴